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Abstract—Transparency logs allow users to audit a potentially
malicious service, paving the way towards a more accountable
Internet. For example, Certificate Transparency (CT) enables
domain owners to audit Certificate Authorities (CAs) and detect
impersonation attacks. Yet to achieve their full potential, trans-
parency logs must be efficiently auditable. Specifically, everyone
should be able to verify both (non)membership of log entries
and that the log remains append-only. Unfortunately, current
transparency logs either provide small-sized (non)membership
proofs or small-sized append-only proofs, but never both. In
fact, one of the proofs always requires bandwidth linear in
the size of the log, making it expensive for everyone to audit
the log and resulting in a few “opaque” trusted auditors. In
this paper, we address this gap with a new primitive called an
append-only authenticated dictionary (AAD). Our construction is
the first to achieve (poly)logarithmic size for both proof types.
Moreover, our experimental evaluation is very encouraging: for
reasonable application scenarios, our AAD reduces the total
communication bandwidth in transparency schemes by more
than 200×, compared to previous approaches.

I. INTRODUCTION

Security is often bootstrapped from a public-key infrastruc-
ture (PKI). For example, on the web, Certificate Authorities
(CAs) digitally sign certificates that bind a website to its public
key. This way, a user who successfully verifies the certificate
can set up a secure channel. In general, many systems (e.g.,
WhatsApp [1]) require a PKI or assume one exists [2]–[5].

Despite their necessity, PKIs have proven difficult to secure
as evidenced by past CA compromises [6]–[8]. To address
such attacks, transparency logs [9]–[11] have been proposed
as a way of building accountable (and thus more secure)
PKIs. A transparency log is managed by a log server, who
periodically appends key-value pairs, and is queried by users,
who want to know certain keys’ values. For example, in key
transparency [10], [12]–[18], CAs are required to publicly
log certificates they issue (i.e., values) for each domain (i.e.,
keys). Fake certificates can thus be detected in the (honest)
log, holding CAs accountable for their misbehavior.

Transparency logging is becoming increasingly important
in today’s Internet. This is evident with the widespread
deployment of Google’s Certificate Transparency (CT) [10]
project. Since its initial March 2013 deployment, CT has

publicly logged over 2.1 billion certificates [19]. Furthermore,
since April 2018, Google’s Chrome browser requires all new
certificates to be published in a CT log [20]. In the same spirit,
there has been increased research effort into software trans-
parency schemes [21]–[26] for securing software updates [27],
[28]. Furthermore, Google is prototyping general transparency
logs [11], [29] via their Trillian project [29]. Therefore, it is
not far-fetched to imagine generalized transparency improving
our census system, our elections, and perhaps our government.

To realize their full potential, transparency logs must operate
correctly or be easily caught otherwise. Specifically, trans-
parency logs must have three key properties:

Logs should remain append-only. In a log-based PKI, a
devastating attack is still possible: a malicious CA can publish
a fake certificate in the log but later collude with the log
server to have it removed, which prevents the victim from
ever detecting the attack. Transparency logs should therefore
be able to prove that they remain append-only, i.e., the new
version of the log still contains all entries of the old version.
One trivial way to provide such a proof is to return the newly-
added entries to the user and have the user enforce a subset
relation. But this is terribly inefficient. Instead, in a real-world
system we want a client with a “short” digest hold to accept
a new digest hnew only if it comes with a small append-only
proof computed by the log. This proof should convince the
client that the old log with digest hold is a subset of the new
log with digest hnew.

Logs should not equivocate. When users have access to
digests (instead of whole logs), the central question becomes:
How can the client check against their digest which values
are registered for a certain key k in the log? This is done
via a small (non)membership proof, which we also refer to
as a lookup proof. Importantly, this proof should convince a
client that the server has returned nothing more or less than
all values of key k. Otherwise, the server could equivocate
and present one set of values V for k to a user and a different
set V ′ to some other user.

Logs should remain fork-consistent. An unavoidable issue
in this setting is that the log server can fork users [3], [9]. In
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other words, although each user keeps their view of the log
append-only by verifying proofs, users’ logs could still differ.
For example, the server can append (k, v) to one user’s log
while withholding it from another user’s view of the log and
instead appending (k, v′). To counter this, logs can provide
a property called fork consistency [3], [30]. Intuitively, fork
consistency guarantees that once two users have been forked,
their digests will diverge forever afterwards. As a result, users
can easily detect forks by periodically checking if they have
the same digest at some version i, e.g., via gossiping [25],
[31].
Limitations of existing approaches. Unfortunately, cur-
rent transparency logs have to pick between low-bandwidth
append-only proofs [9], [10] or low-bandwidth lookup
proofs [13], [32]. For example, in CT [10], users (i.e., domain
owners) must periodically monitor the log by looking up their
own certificates to detect impersonation. However, because CT
lacks efficient lookups, the only way for users to monitor is to
download every certificate after it is appended. Unfortunately,
this blows up the log server’s communication cost: assuming
30 million users who monitor, the log server would need 99.5
GBps of bandwidth (see Section VI-E3). Due to this, domain
owners tend to outsource monitoring to opaque trusted third-
parties, which defeats the purpose of transparency.

Similarly, CONIKS [13] periodically publishes a new ver-
sion of the log that should include all past entries. However,
CONIKS lacks efficient append-only proofs: there is no effi-
cient way for users to check no entries were removed. Instead,
users only check that their own public key has not been
changed or removed, but must do so in every updated version
of the log. Unfortunately, this blows up the CONIKS server’s
communication cost. For example, suppose WhatsApp [1] used
CONIKS for key transparency, with 0.001% of its 1 billion
users updating their key daily (mild assumption). With a 960-
byte membership proof, the total server bandwidth would be
111 GBps—without even accounting for key revocations.
Our contribution. In this paper, we show how to build
efficiently-auditable transparency logs using a novel crypto-
graphic primitive called an append-only authenticated dic-
tionary (AAD) which maps a key to one or more values in
an append-only fashion. We present an AAD construction
from bilinear accumulators [34] (see Sections III to V). Our
construction is the first to offer logarithmic-sized append-only
proofs, polylogarithmic-sized lookup proofs and polylogarith-
mic worst-case time appends. (See Table I for comparison

with previous works: n is the number of key-value pairs in
the dictionary and λ is the bit-size of one key-value pair.) We
prove its security under the q-SBDH and q-PKE assumptions.

We also implement and evaluate our construction in Sec-
tion VI. We show that our lookup and append-only proofs are
in the order of KBs and our verification time is in the order
of seconds. For example, a proof for a key with 32 values
in a dictionary of 106 entries is 94 KB and verifies in 2.5
seconds. While our membership proof sizes are much larger
than in previous work [9], [13], our small-sized append-only
proofs easily make up for it. In fact, in reasonable scenarios,
we vastly decrease the total bandwidth consumption of CT
from 99.5 GBps to 400 MBps (254×) and of CONIKS from
111 GBps to 544 MBps (208×) (see Section VI-E3).

A. Overview of our techniques

Our starting point is to first build an append-only authen-
ticated set (AAS) by enhancing bilinear accumulators (see
Section II-A). We later modify our AAS into an append-only
authenticated dictionary (AAD). A bilinear accumulator [34]
can be used to represent a set Y = {y1, . . . , yn} with a
secure digest d(Y) = gY(s), where Y(x) =

∏n
i=1(x − yi)

is the characteristic polynomial of Y and s is a trapdoor.
The accumulator naturally supports append-only proofs for
Y ⊆ Z: given d(Y) and d(Z), the proof is d(W), where
W(x) = Z(x)/Y(x). Moreover, one can naturally define
(non)membership proofs too. In principle, the bilinear-map
accumulator as is gives us a secure AAS with short proofs but,
unfortunately, computing these proofs requires time at least
linear in the set sizes, which is not practical.

Precomputing membership proofs. We reduce proof com-
putation cost in bilinear accumulators by precomputing all
proofs. Naively, it is already possible to precompute mem-
bership proofs, since there are only n of them. Unfortunately,
this requires O(n2) time which is prohibitive for large sets.
Our first contribution is to design a new bilinear accumulator
called a bilinear tree where elements are stored at the leaves of
a binary tree and every tree node stores an accumulator of its
subtree. A bilinear tree can be computed in O(n log2 n) time
and, once ready, it has all n membership proofs precomputed.
This leads to an amortized O(log2 n) cost for computing
a membership proof, which will be crucial later when we
efficiently dynamize our data structure [35], [42].

Precomputing non-membership proofs. Unlike membership
proofs, it seems that non-membership proofs are inherently-
hard to precompute, since the elements that are not in the
accumulator can be exponentially-many. To overcome this
problem, for every element yi in our set, we include in the
accumulator all prefixes of yi’s binary representation. In this
manner, non-membership of an element can be demonstrated
by proving non-membership for one of its prefixes. Impor-
tantly, a certain prefix ρ can be shared by a potentially-
large subset S of elements that are not present. Thus a non-
membership for ρ can be used as a non-membership proof
for every element in S! This technique will allow us to



precompute non-membership proofs for O(2λ) elements in
O(λn log2 (λn)) time.
Efficient appends and append-only proofs. Our discussion
so far does not address how to update a bilinear tree with
a new element. The naive approach would be to simply
recompute it after every append in O(λn log2 (λn)) time, but
this is prohibitive. Instead, we use standard techniques from
Overmars [35], [42] to dynamize any static data structure
and achieve appends in O(λ log3 n) worst-case time. This
comes at the expense of a multiplicative logarithmic factor
in our append time and our proof sizes. Finally, after applying
the Overmars technique, our resulting data structure lends
itself easily to append-only proofs. Our append-only proof is
O(log n)-sized and reduces to proving that a certain number
of bilinear trees are subsets of a new bilinear tree.

B. Related work

Previous work on authenticated data structures (ADS) falls
into two categories. First, some have succinct append-only
proofs but lack succinct lookup proofs [9], [10], [36]–[38].
Second, other work has succinct lookup proofs but lacks
succinct append-only proofs [17], [32], [39], [40]. Our work
extends these works with efficient proofs for both operations.
Our work can also be regarded as an extension of bilinear
accumulators [34], [41]. As discussed in Section I-A, we en-
hance bilinear accumulators with precomputed proofs of non-
membership, membership and append-only (at the expense
of slightly larger proofs). We also improve update times in
accumulators from linear time to worst-case polylogarithmic
time using de-amortization techniques [35], [42].

Many transparency log designs were proposed after CT [12],
[13], [15], [16], [18], [24], [43]. However, due to the limita-
tions of ADSs explained above, all proposed designs provide
efficient lookup proofs at the cost of inefficient append-only
proofs. Some designs work around this by relying on trusted
third parties to maintain the append-only property [15], [16],
[24], [43]. Other designs require users to collectively monitor
the log to ensure it remains append-only [12], [13], [18],
[44]. Unfortunately, similar to CONIKS, these designs also
require too much bandwidth from auditors and log servers. In
contrast, our design allows everybody to audit efficiently via
logarithmic-sized lookup and append-only proofs.

Previous work formalizes Certificate Transparency
(CT) [45], [46] and general transparency logs [45]. In
contrast, our work formalizes append-only authenticated
dictionaries (AAD) and sets (AAS), which can be used
directly as a transparency log. Our AAD abstraction is
more expressive than the dynamic list commitment (DLC)
abstraction introduced in previous work [45]. Specifically,
DLCs are append-only lists with non-membership by insertion
time, while AADs are append-only dictionaries with non-
membership by arbitrary keys. Furthermore, AADs can easily
be extended to support non-membership by insertion time
as well. Perhaps most importantly, AAD-based transparency
logs do not need to be monitored by trusted third parties [45],
[46]. Instead, AADs can be audited by everybody via efficient

lookup proofs and efficient append-only proofs. Finally,
previous work carefully formalizes proofs of misbehavior for
transparency logs [45], [46]. Although AADs provide proofs
of misbehavior, we do not formalize them in this paper.

Lastly, previous work improves or extends transparency
logging in various ways but does not tackle the append-
only problem [47]–[49]. Also, neither our work nor previous
work adequately models the network connectivity assumptions
needed to detect forks in a gossip protocol.

II. PRELIMINARIES

In this section we define some notation used throughout
Sections IV and V, and we introduce our cryptographic
assumptions and bilinear accumulators [34], [50].

Notation. Let λ denote our security parameter. Let H denote a
collision-resistant hash function (CRHF) with 2λ-bits output.
We use multiplicative notation for all algebraic groups in
this paper. Let Fp denote the finite field “in the exponent”
associated with a group G of prime order p. Let poly(·) denote
any function upper-bounded by some univariate polynomial.
Let ε(·) denote any negligible function and η(λ) = 1− ε(λ).
Let log x be shorthand for log2 x. Let [n] = {1, 2, . . . , n} and
[i, j] = {i, i+1, . . . , j−1, j}. Let PPq(s) = 〈gs, gs2 , . . . , gsq 〉
denote public parameters used in the q-SBDH assumption
and let PPq(s, τ) = 〈gs, gs2 , . . . , gsq , gτs, gτs2 , . . . , gτsq 〉
denote public parameters used in the q-PKE assumption (see
Section II). Let ε denote the empty string.

Cryptographic assumptions. Our work relies on the use
of pairings or bilinear maps, first introduced by Menezes
et al [51] and used in many later works [34], [50], [52]–
[54]. Recall that a bilinear map e(·, ·) has useful algebraic
properties: e(ga, gb) = e(ga, g)b = e(g, gb)a = e(g, g)ab.
To simplify exposition, throughout the paper we assume
symmetric (Type I) pairings. Our assumptions can be re-
stated in the setting of the more efficient asymmetric (Type II
and III) pairings in a straight-forward manner. Indeed our
implementation in Section VI uses asymmetric pairings.

Definition II.1 (Bilinear pairing parameters). Let G(·) be a
randomized polynomial algorithm with input a security pa-
rameter λ. Then, 〈G,GT , p, g, e〉 ← G(1λ) are called bilinear
pairing parameters if G and GT are cyclic groups of prime
order p where discrete log is hard, G = 〈g〉 (i.e., G has
generator g) and if e is a bilinear map, e : G × G → GT
such that GT = 〈e(g, g)〉.

Our AAD construction from Section V is provably secure
under the q-SBDH [55] and q-PKE assumptions [56] over
elliptic curve groups with bilinear pairings, which we define
in Appendix A.

A. Bilinear Accumulators

A bilinear accumulator is a cryptographic commitment to
a set T = {e1, e2, . . . , en} that supports (non)membership,
subset and disjointness proofs [34], [41]. We refer to T as the
accumulated set.



Committing to a set. Let CT (x) = (x− e1)(x− e2) · · · (x−
en) denote the characteristic polynomial of T and s denote
a trapdoor that nobody knows. The accumulator acc(T ) of
T is computed as acc(T ) = gCT (s) = g(s−e1)(s−e2)···(s−en).
The trapdoor s is generated during a trusted setup phase after
which nobody knows s. Specifically, given an upper-bound q
on the set size, this phase returns q-SDH public parameters
PPq(s) = 〈gs, gs2 , . . . , gsq 〉. Given coefficients c0, c1, . . . , cn
of CT (·) where n ≤ q, the accumulator is computed using the
q-SDH public parameters, without knowledge of s:

acc(T ) = gc0(gs)c1(gs
2

)c2 · · · (gs
n

)cn

= gc0+c1s+c2s
2···cnsn = gCT (s)

In other words, the server computes a polynomial commit-
ment [34], [50] to the characteristic polynomial of T . Note
that the bilinear accumulator supports sets of elements from
Fp. To avoid ambiguity, given a domain D we define a function
HF : D → Fp that maps elements to be accumulated to values
in Fp. To accumulate sets with elements of larger size (i.e.,
|D| > |Fp|), one can always reduce each element down to
logp bits first using a collision-resistant hash function.

Membership proofs. A prover who has T can convince a
verifier who has acc(T ) that an element ei is in the set T .
The prover simply convinces the verifier that x−ei | CT (x) by
presenting a commitment π = gq(s) to a quotient polynomial
q(·) such that CT (x) = (x − ei)q(x). Using a bilinear map,
the verifier checks the property above holds at x = s, which
under q-SDH is enough for security [50]:

e(g, acc(T ))
?
= e(π, gs/gei)⇔ e(g, g)CT (s)

?
= e(g, g)q(s)(s−ei)

Non-membership proofs. To prove that some element u is
not in the set T , the prover convinces the verifier that x− u |
CT (x) − y for some y 6= 0. Specifically, the prover presents
a commitment π = gq(s) to a quotient polynomial q(·) such
that CT (x)− y = (x− u)q(x) [41], [50]. The verifier checks
that y 6= 0 and that e(g, acc(T )/gy)

?
= e(π, gs/gu).

Subset proofs. To prove that A ⊆ B, the prover shows
that CA(x) | CB(x). Specifically, the prover presents a com-
mitment π = gq(s) of a quotient polynomial q(·) such that
CB(x) = q(x)CA(x). The verifier checks that e(g, acc(B))

?
=

e(π, acc(A)).

Disjointness proofs. Suppose we have sets A and B such
that A ∩ B = ∅. To prove disjointness, the prover uses
the Extend Euclidean Algorithm (EEA) [57]. Specifically, the
prover computes Bézout coefficients y(·) and z(·) such that
y(x)CA(x) + z(x)CB(x) = 1. The proof consists of commit-
ments to the Bézout coefficients γ = gy(s) and ζ = gz(s). The
verifier checks that e(γ, acc(A))e(ζ, acc(B))

?
= e(g, g).

Fast Fourier Transform (FFT). We use FFT [58] to speed
up polynomial interpolation, multiplication and division. In
particular, for polynomials of degree-bound n, we divide and
multiply them in O(n log n) field operations [59], [60]. We
interpolate a polynomial from its n roots in O(n log2 n)

Fig. 1. Our model consists of a single malicious server who manages a set
and an unbounded number of clients who query the set. The server stores
the full set while clients only store a small-sized digest. Clients will not
necessarily have the latest digest associated with the latest set. The clients
can (1) append a new element to the set, (2) query for an element and (3)
update their digest of the set. Clients query the server concurrently and an
honest server should serialize all appends. Clients verify a (non)membership
proof when querying for an element. Clients will also verify an append-only
proof when updating their digests to ensure no elements were removed.

field operations [61]. We compute Bézout coefficients for two
polynomials of degree-bound n using the Extended Euclidean
Algorithm (EEA) in O(n log2 n) field operations [57].

III. APPEND-ONLY AUTHENTICATED SET (AAS)

We begin by introducing a new primitive called an append-
only authenticated set (AAS). An AAS can be used for
revocation transparency as proposed by Google [62]. We later
modify our AAS into an append-only authenticated dictionary
(AAD), which can be used for generalized transparency [11].

Overview. An AAS is a set of elements that can only be ap-
pended to and is efficiently auditable. An AAS is managed by
an untrusted server and queried by many mutually-distrusting
clients who append and look up elements (see Figure 1).
Initially, the set starts out empty at version zero, with new
appends increasing its size and version by one. Importantly,
once an element has been appended to the set, it remains there
forever: an adversary cannot remove the element.

Clients append elements to the set concurrently (e.g., Step
1 in Figure 1). The server serializes appends from clients and
publishes a new, small-sized digest of the set after each append
(e.g., Step 2). Clients periodically update their view of the set
by requesting a new digest from the server (e.g., Step 6 and 7).
We stress that the new digest could be for an arbitrary version
j > i, where i is the previous version of the set (not just for
j = i+ 1). Importantly, clients always ensure the set remains
append-only by verifying an append-only proof between the
old and new digest (e.g., Step 8). This way, clients can be
certain the malicious server has not removed any elements
from the set. Finally, clients securely check if an element k
is in the set via a (non)membership proof (e.g., Steps 3-5 in
Figure 1).

A malicious server can fork clients’ views [3], preventing
them from seeing each other’s appends. To deal with this,
clients maintain a fork consistent view [3], [30] of the set



by checking append-only proofs. This is crucial for security
in transparency logs such as Revocation Transparency [62],
CT [10] or CONIKS [13]. Specifically, if the server ever
withholds an append from one client, that client’s digest will
forever diverge from other clients’ digests. As a consequence,
if that client gossips [25], [31] with other clients and learns
his digest differs from their digest (at the same version i), the
client detects the forking attack.

Other models. Our model is stronger when compared to
the more common 2- and 3-party models [39], [43], [63] of
authenticated data structures. Specifically, there is no trusted
source that updates the set in our model. The clients and,
possibly, the malicious server are the untrusted source of
updates. In fact, having a trusted source trivially solves the
AAS problem because the trusted source can simply verify
that the set remained append-only and vouch for it with a
digital signature. Unfortunately, this kind of solution is useless
for applications such as Certificate Transparency (CT) [10]
where there is no trusted source. Finally, our model arises
in important applications such as public-key distribution [10],
[12], [15]–[17], [64], [65], encrypted web applications [2], [4],
[66], software transparency schemes [22], [23] and tamper-
evident logging [9].

A. Append-only Authenticated Set API

Server-side API. The untrusted server implements:

Setup(1λ, β) → pp, V K. Randomized algorithm that returns
public parameters pp for the AAS scheme and a verification
key V K used by clients. Here, λ is a security parameter
and β is an upper-bound on the number of elements n in
the set (i.e., n ≤ β). If the scheme has a trapdoor, anyone
in possession of the trapdoor can break the security of the
scheme (defined in Section III-B). In that case, Setup(·) has
to be run by a trusted entity who promises to “forget” the
trapdoor.

Append(pp,Si, di, k) → Si+1, di+1. Deterministic algorithm
that appends a new element k to the version i set, creating
a new version i+ 1 set. Succeeds only if the set is not full
(i.e., i + 1 ≤ β). Returns the new authenticated set Si+1

and its digest di+1.
ProveMemb(pp,Si, k) → b, π. Deterministic algorithm that

proves (non)membership for element k. When k is in the set,
generates a membership proof π and sets b = 1. Otherwise,
generates a non-membership proof π and sets b = 0.

ProveAppendOnly(pp,Si,Sj) → πi,j . Deterministic algo-
rithm that proves Si ⊆ Sj . In other words, generates an
append-only proof πi,j that all elements in Si are also
present in Sj . Importantly, a malicious server who removed
elements from Sj that were present in Si cannot construct
a valid append-only proof (see Section III-B).

Client-side API. Clients implement:

VerMemb(V K, di, k, b, π) → {T, F}. Deterministic algo-
rithm that verifies proofs returned by ProveMemb(·) against

the digest di at version i of the set. When b = 1, verifies
k is in the set via the membership proof π. When b = 0,
verifies k is not in the set via the non-membership proof π.
(We formalize security in Section III-B.)

VerAppendOnly(V K, di, i, dj , j, πi,j)→ {T, F}. Determinis-
tic algorithm that ensures a set remains append-only. Verifies
that πi,j correctly proves that the set with digest dj is a
superset of the set with digest di (see Section III-B). Also,
verifies that di and dj are digests of sets at version i and j
respectively, enforcing fork consistency.

Using the API. To use an AAS scheme, first public parameters
need to be computed using a call to Setup(·). If the AAS
scheme is trapdoored, a trusted party runs Setup(·) and forgets
the trapdoor. Once computed, the parameters can be reused by
different servers for different append-only sets. Setup(·) also
returns a public verification key V K used by clients.

Clients first need to obtain the verification key V K returned
by Setup(·). Then, the server digitally signs and broadcasts
the initial digest d0 of the empty set S0 to its many clients.
Clients can start appending elements using Append(·) calls. If
the server is honest, it serializes Append(·) calls and returns
the new digest di, digitally-signed, to its clients along with an
append-only proof π0,i computed using ProveAppendOnly(·).
Some clients might be offline but eventually they’ll receive
either di or a newer dj , j > i later on. Importantly, whenever
they transition from version i to j, all clients check an append-
only proof πi,j using VerAppendOnly(V K, di, i, dj , j, πi,j).

Clients can look up elements in the set. The server proves
(non)membership of an element using ProveMemb(·). A client
verifies the proof using VerMemb(·) against their digest. As
more elements are added by clients, the server continues to
publish a new digest dj and proves it’s a superset of the
previous digest di using ProveAppendOnly(·).

B. AAS Correctness and Security Definitions

We first introduce some helpful notation, before presenting
our correctness definition. Consider an ordered sequence of n
elements (ki ∈ K). Let S ′, d′ ← Append+(pp,S, d, (ki)i∈[n])
denote a sequence of Append(·) calls arbitrarily inter-
leaved with other ProveMemb(·) and ProveAppendOnly(·)
calls such that S ′, d′ ← Append(pp,Sn−1, dn−1, kn),
Sn−1, dn−1 ← Append(pp,Sn−2, dn−2, kn−1), . . . , S1, d1 ←
Append(pp,S, d, k1). Finally, let S0 denote an empty AAS
with empty digest d0.

Definition III.1 (Append-only Authenticated Set). (Setup,
Append, ProveMemb, ProveAppendOnly, VerMemb,
VerAppendOnly) is a secure append-only authenticated
set (AAS) if, ∀ security parameters λ, ∀ upper-bounds
β = poly(λ) and ∀n ≤ β it satisfies the following properties:

Membership correctness. ∀ ordered sequences of elements
(ki)i∈[n], for all elements k, where b = 1 if k ∈ (ki)i∈[n] and



b = 0 otherwise,

Pr


(pp, V K)← Setup(1λ, β),

(S, d)← Append+(pp,S0, d0, (ki)i∈[n]),
(b′, π)← ProveMemb(pp,S, k) :

b = b′ ∧ VerMemb(V K, d, k, b, π) = T

 = η(λ)

Observation: Note that this definition compares the returned
bit b′ with the “ground truth” in (ki)i∈[n] and thus provides
membership correctness. Also, it handles non-membership
correctness since b′ can be zero. Finally, the definition handles
all possible orders of inserting elements.

Membership security. ∀ adversaries A running in time
poly(λ),

Pr


(pp, V K)← Setup(1λ, β),

(d, k, π, π′)← A(pp) :
VerMemb(V K, d, k, 0, π, ) = T ∧
VerMemb(V K, d, k, 1, π′, ) = T

 = ε(λ)

Observation: This definition captures the lack of any “ground
truth” about what was inserted in the set, since there is no
trusted source in our model. Nonetheless, given a fixed digest
d, our definition prevents all equivocation attacks about the
membership of an element in the set.

Append-only correctness. ∀m < n, ∀ sequences (ki)i∈[n]
where n ≥ 2,

Pr


(pp, V K)← Setup(1λ, β)

(Sm, dm)← Append+(pp,S0, d0, (ki)i∈[m]),
(Sn, dn)← Append+(pp,Sm, dm, (ki)i∈[m+1,n]),

π ← ProveAppendOnly(pp,Sm,Sn) :
VerAppendOnly(V K, dm,m, dn, n, π) = T

 = η(λ)

Append-only security. ∀ adversaries A running in time
poly(λ),

Pr


(pp, V K)← Setup(1λ, β)

(di, dj , i < j, πa, k, π, π
′)← A(pp) :

VerAppendOnly(V K, di, i, dj , j, πa) = T ∧
VerMemb(V K, di, k, 1, π) = T ∧
VerMemb(V K, dj , k, 0, π

′) = T

 = ε(λ)

Observation: This definition ensures that elements can only
be added to an AAS.

Fork consistency. ∀ adversaries A running in time poly(λ),

Pr


(pp, V K)← Setup(1λ, β)

(di 6= d′i, dj , i < j, πi, π
′
i)← A(pp) :

VerAppendOnly(V K, di, i, dj , j, πi) = T ∧
VerAppendOnly(V K, d′i, i, dj , j, π

′
i) = T

 = ε(λ)

Observation: This is our own version of fork consistency
for append-only sets that captures what is known in the
literature about fork consistency [3], [9]. Specifically, it allows
a server to fork the set at version i by presenting two different
digests di and d′i. Importantly, it prevents the server from
forging append-only proofs that “join” the two forks into some
common digest dj at a later version j.

IV. AAS FROM BILINEAR ACCUMULATORS

Here, we present our AAS construction based on a bi-
linear accumulator and we give an algorithmic descrip-
tion in Section IV-A. As discussed in Section II, proving
(non)membership with a bilinear accumulator requires a poly-
nomial division which takes O(n) time where n is the number
of elements in the set. Thus, all n membership proofs can
be precomputed (naively) in time O(n2). Unfortunately, this
quadratic cost would be prohibitive for most use cases, even if
only incurred once. Even worse, for non-membership, there is
no tractable way to precompute proofs for accumulators over
exponential-sized universes: the non-membership procedure
from Section II-A would have to be called an exponential num-
ber of times. Therefore, we need new techniques to achieve
our desired polylogarithmic time complexity for computing
both types of proofs in our AAS.
A bilinear-tree accumulator. Our first technique is to deploy
the bilinear accumulator in a tree structure, as follows. We
start with the elements ei as leaves of a binary tree (see
Figure 2). Specifically, each leaf will store an accumulator
over (the singleton set) ei. Every internal node in the tree will
then store an accumulator over the set defined as the union of
the sets corresponding to its two children. For example, the
parent node of the two leaves corresponding to ei and ei+1

stores the accumulator of the set {ei, ei+1}. In this way, the
root is the accumulator over the full set S = {ei, . . . , en} (see
Figure 2). We stress that all these accumulators use the same
public parameters. The time to compute all the accumulators
in the tree is T (n) = 2T (n/2)+O(n log n) where O(n log n)
is the time to multiply the characteristic polynomials of two
children sets of size n in the tree, thus T (n) = O(n log2 n).
We call the resulting structure a bilinear tree over set S.
Membership proofs in bilinear trees. A membership proof
for element ei will leverage the fact that sets along the path
from ei’s leaf to the root of the bilinear tree are subsets of each
other. The proof will consist of a sequence of subset proofs
that validate this (computed as explained in Section II-A).
Specifically, the proof contains the accumulators along the path
from ei’s leaf to the root, as well as the accumulators of all
sibling nodes along this path (see Figure 2). The client simply
verifies all these subset proofs, starting from the singleton set
ei in the leaf. This convinces him that ei is contained in the
parent’s accumulated set, which in turn is contained in its
parent’s accumulated set and so on, until the root.

Our bilinear tree approach gives us membership proofs
of logarithmic size and thus logarithmic verification time.
Importantly, computing a bilinear tree in O(n log2 n) time
implicitly computes all membership proofs “for free”! In
contrast, building a standard billinear accumulator over S
would yield constant-size proofs but in O(n2) time for all n
proofs. Unfortunately, our bilinear tree structure does not (yet)
support precomputing non-membership proofs. We devise new
techniques that address this next.
Bilinear prefix trees to the rescue. To efficiently precompute
non-membership proofs, we slightly modify our bilinear tree.



Instead of storing an element ei ∈ S, the ith leaf will store
the set of prefixes of the binary representation of ei. (We
assume this representation is λ bits or can be made λ bits
using a collision-resistant hash function.) For example, a leaf
that previously stored element e1 with binary representation
0001, will now store the set P (e1) = {ε, 0, 00, 000, 0001}
(i.e., all the prefixes of the binary representation of e1,
including the empty string ε). In general, for each element
ei, P (ei) is the set of all λ + 1 prefixes of ei. Also,
for any set S = {e1, . . . , en}, we define its prefix set as
P (S) = P (e1) ∪ · · · ∪ P (en). For example, let S = {a =
0001, b = 0101, c = 1110}. The root of S’s bilinear tree will
contain an accumulator over P (S) = P (a) ∪ P (b) ∪ P (c) =
{ε, 0, 1, 00, 01, 11, 000, 010, 111, 0001, 0101, 1110}.

We refer to such a bilinear tree as a bilinear prefix tree
(BPT) over S. The time to build a BPT for S is O(λn log2 n)
since there are O(λn) prefixes across all leaves. Note that
membership proofs in a BPT are the same as in bilinear trees,
with a minor change. The internal nodes of the tree still store
accumulators over the union of their children. However, the
children now have common prefixes, which will only appear
once in the parent. For example, two children sets have the
empty string ε while their parent set only has ε once (because
of the union). As a result, it is no longer the case that
multiplying the characteristic polynomials of the children gives
us the parent’s polynomial. Therefore, we can no longer rely
on the sibling as subset proofs: we have to explicitly compute
subset proofs for each child w.r.t. its parent. We stress that this
does not affect the asymptotic time complexity of computing
the BPT. As before, the verifier starts the proof verification
from the leaf, which now stores a prefix set P (ei) rather than
a singleton set ei.

Efficient non-membership proofs. But how does a BPT help
with precomputing non-membership proofs for any element
e′ /∈ S? First, note that, because of our use of prefixes, to
prove e′ /∈ S it suffices to show that any one prefix ρ of e′ is
not contained in P (S). Second, note that there exist other keys
e′′ who share ρ as a prefix. As a result, the non-membership
proof for e′ can also be “reused” as a non-membership proof
for e′′. This is best illustrated in Figure 2 using our previous
example where S = {a, b, c}. Consider elements d = 0111
and f = 0110 that are not in S. To prove non-membership for
both elements, it suffices to prove the same statement: 011 /∈
P (S). Thus, if we can identify all such shared prefixes, we
can use them to prove the non-membership of (exponentially)
many elements. This begs the question how many such shared
prefixes are there? And can we efficiently precompute non-
membership for all of them? We answer these questions next.

Suppose, we insert all elements from S in a trie as depicted
in Figure 2 (by inserting a node in the trie for each prefix, as
usual). Next, we keep track of the prefixes at the “frontier” of
the trie depicted in red in Figure 2. We immediately notice that
to prove non-membership of any element not in S, it suffices
to prove non-membership of one of these frontier prefixes! In
other words, elements that are not in S will have one of these

Fig. 2. On the left side, we depict a trie over set S = {a, b, c}. Each element
is mapped to a unique path of length 4 in the trie. Nodes that are not in the
trie but are at its frontier are depicted in red. On the right side, we depict
a bilinear frontier tree (BFT) corresponding to the set S. To prove that an
element is not in S, we prove one of its prefixes is in the BFT.

as a prefix. Thus, we formally define the frontier set of S as:

F (S) = {ρ ∈ {0, 1}≤λ : ρ 6∈ P (S) ∧ parent(ρ) ∈ P (S)},

where parent(ρ) is ρ without its last bit (e.g., parent(011) =
01). Note that the size of F (S) is O(λn), same as P (S).

Most importantly, from the way P (S) and F (S) are defined,
for any element e′ it holds that e′ 6∈ S if, and only if, some
prefix of e′ is in F (S). Therefore, proving non-membership
of e′ boils down to proving two statements: (i) some prefix
of e′ belongs to F (S), and (ii) P (S) ∩ F (S) = ∅. We stress
that the latter is necessary as a malicious server may try to
craft F (S) in a false way (e.g., by adding some prefixes both
in P (S) and in F (S)). To prove (i), we build a bilinear tree
over F (S) which gives us precomputed membership proofs
for all s ∈ F (s). We refer to this tree as the bilinear frontier
tree (BFT) for set S and to the proofs as frontier proofs. To
prove (ii), we compute a disjointness proof between sets P (S)
and F (S), as described in Section II-A (i.e., between the root
accumulators of the BFT and the BPT of S). The time to build
a BFT for S is O(λn log2 n) since F (S) has O(λn) elements.
The disjointness proof can be computed in O(λn log2 n) time.

Core (static) AAS construction. Combining all the above
techniques, our core (static) AAS construction consists of: (a)
a BPT for S, (b) a BFT for S, and (c) a proof of disjointness
between P (S) and F (S) (i.e., between the root BPT and BFT
accumulators). The height of the BPT is O(log n) and the
height of the BFT is O(log (λn)) so the size and verification
time of a (non)membership proof is O(log n). The digest that
users store locally is just the root accumulator of the BPT.

Handling appends efficiently. So far, we only discussed the
case of a static set S. However, our AAS should support
appending new elements to S. The main challenge here is
efficiency since updating the BPT and BFT as well as the
disjointness proof after each update is very expensive (at least
linear). To address this we use a classic “amortization” trick
from Overmars [35].

Specifically, our AAS will consist not of one BPT for the
entire set S, but will be partitioned into a forest of BPTs and
their corresponding BFTs. Initially, we start with an empty set
S. When the first element e1 is appended, we build its tree-
pair: a BPT, BFT and disjointness proof for the singleton set
{e1}. When the second element e2 is appended, we “merge”:



we build a tree-pair over {e1, e2}. The thumb rule is we always
merge equal-sized subsets of S! When e3 is appended, we
cannot merge it because there’s no other subset of size 1.
Instead, we create a tree-pair over {e1}. In general, after 2i−1
appends, we will have built i separate tree-pairs corresponding
to disjoint sets S1, . . . , Si where S =

⋃i
j=1 Sj and |Sj | = 2j .

The evolution of such a forest is depicted in Figure 3.
When merging two subsets S1 and S2 of S in the forest, we

have to compute a new tree-pair over S1∪S2. To compute the
new BPT, we need to (i) compute its root accumulator, (ii) set
its children to the “old” roots of S1 and S2 and (iii) compute
subset proofs S1 ⊂ S and S2 ⊂ S. Since |S1| = |S2| = n,
operations (i), (ii) and (iii) take time O(λn log2 n). Finally,
we recompute the BFT for S1 ∪ S2 from scratch which also
takes time O(λn log2 n).

To analyze the append time, consider the time to T (n) to
create an AAS over a set S with n = 2i elements (without loss
of generality). Then, T (n) is just the time to create a tree-pair
over S and can be broken into (i) the time to create a tree-pair
over the children of S of size n/2 (i.e., 2T (n/2)) (ii) the time
to merge these two children BPTs (including computing subset
proofs) and (iii) the time to compute the BFT of S. More
formally, T (n) = 2T (n/2)+O(λn log2 n) which simplifies to
T (n) = O(λn log3 n) time for n appends. Thus, the amortized
time for 1 append is O(λ log3 n) and can be de-amortized into
worst-case time using generic techniques [35], [42].

The downside of our de-amortized approach is that prov-
ing non-membership becomes slightly more expensive. Now
the server needs to prove non-membership in each tree-pair
separately, requiring an O(log n) frontier proof in each of
the O(log n) BFTs. This increases the non-membership proof
size to O(log2 n). On a good note, membership proofs remain
unaffected: the server just sends a path to a leaf in one of the
BPTs where the element is found. Finally, the AAS digest is
just the root accumulators of all BPTs and has size O(log n).
We analyze the AAS overheads from Table I in Appendix C.
Handling appends securely. Ensuring the set remains append-
only is rather straight-forward, given the structure of bilinear
prefix trees. In fact, our technique is similar to append-only
proofs in history trees [9]. In particular, recall that when we
merge the BPTs for S1, S2 and build a new BPT, (i) we
compute its new root as the accumulator of P (S1) ∪ P (S2),
(ii) we set the two old roots as the new root’s children and
(iii) we compute subset proofs between the old roots and the
new root. Thus, the old roots become children nodes in the
new BPT. In fact, because every append to the AAS triggers
a sequence of merges, we can generalize the above statement:
after a sequence of appends, some of the old roots in the AAS
will become children of a new BPT. The other old roots, if
any, will remain as (new) roots in the new forest (e.g., root 0
from F4 to F5 in Figure 3).

Our append-only proof leverages the above invariant. The
proof asks that every old root should either (i) remain as a
(new) root in the new AAS or (ii) have a path to a new root
with valid subset proofs at every level. The path is verified by
checking the subset proofs between every child and its parent,

exactly as in a membership proof. At the same time, note that
there might be new roots that are neither old roots nor do they
have paths to old roots (e.g., root 111 in F5 from Figure 3).
The proof simply ignores such roots since they securely add
new elements to the set. Overall, ensuring that the set remains
append-only boils down to checking that every old root is
either a descendant of a new root or has remained a (new)
root in the new AAS.

Ensuring fork-consistency. Finally, we need to ensure that
the construction is fork-consistent. Interestingly, append-only
proofs do not imply fork-consistency. For example, consider a
server who computes an AAS for set {e1} and another one for
the set {e2}. The server gives the first set’s digest to user A
and the second digest to user B. Afterwards, he appends e2 to
the first set and e1 to the second one, which “joins” the two
sets into a common set {e1, e2}. The append-only property
was not violated (as the two users can deduce independently)
but fork-consistency has: the two users had diverging views
that were subsequently merged.

To avoid this, we will “Merkle-ize” each BPT using a
collision-resistant hash function in the standard manner. Our
AAS digest now consists of Merkle roots for all BPTs, which
implicitly commit to all accumulators in the BPTs. In our pre-
vious example, after merging BPTs for elements e1 and e2, the
root hash of the merged BPT will differ based on how leafs are
ordered: (e1, e2), or (e2, e1). (In contrast, the root accumulator
of the new BPT will be the same: g(s−HF(e1))(s−HF(e2)), where
HF maps elements to be accumulated to values in Fp.) While
verifying the append-only proof, user A with a digest for {e1}
will explicitly check that the old root BPT is a left child of
the new root BPT (using the Merkle hashes). Similarly, user
B with a digest for {e2} will ensure the old root BPT is a
left child of the new BPT as well. As a result of this, the two
users’ digests will diverge. Thus, violating fork-consistency
becomes as hard as finding a collision in the hash function.
To conclude, users enforce fork-consistency by checking that
(i) old root BPTs are descendants of a new root BPT and
(ii) old roots are at the right position in the new BPT (see
Algorithm 4).

A. AAS Algorithms

In this subsection, we describe in detail the algorithms that
implement our AAS (as originally defined in Section III-A).
Recall from Section III that our AAS is just a forest of BPTs
with corresponding BFTs. In particular, observe that each
forest node has a BPT accumulator associated with it, while
root nodes in the forest have BFTs associated with them. Our
algorithms described below will operate on this forest, adding
new leaves with new elements and their BPT accumulators,
merging nodes in the forest and computing BFTs in the roots.

Trees notation. The | symbol denotes string concatenation. A
tree is a set of nodes denoted by binary strings in a canonical
way. The root of a tree is denoted by the empty string ε and
the left and right children of a node w are denoted by w|0 and
w|1 respectively. If b ∈ {0, 1}, then the sibling of w = v|b is



Fig. 3. A forest starting empty and going through a sequence of five appends.
A forest only has trees of exact size 2j for distinct j’s. Note that there are at
most logn trees in a forest of n leaves.

denoted by sibling(w) = v|b, where b = 1 − b. A path from
one node v to its ancestor node w is denoted by path[v, w] =
{u1 = v, u2 = parent(u1), . . . , u` = parent(u`−1) = w}.
The parent node of w = v|b is denoted by parent(w) =
parent(v|b) = v. We also use path[v, w) = path[v, w]−{w}.
Forest notation. Let Fi denote a forest of up to β leaves that
only has i leaves in it (e.g., see Figure 3). Intuitively, a forest
is a set of nodes that might contain multiple trees in it. For
our purposes, in Fi trees of the same size ≥ 1 are merged
recursively, resulting in a number of trees logarithmic in i
where each tree’s size is 2k for some unique k (e.g., see F5 in
Figure 3). Let binβ(x) denote the dlog βe-bit binary expansion
of a number x. Note that bin1(x) = ε,∀x. Let binβ(i) denote
the ith inserted leaf, where i starts at 0 (e.g., see leafs 000
through 111 in F5 in Figure 3). Let roots(Fi) denote all the
roots of all the trees in the forest (e.g., roots(F5) = {0, 111}
in Figure 3). Let leaves(Fi) denote all the leaves in the forest
(e.g., leaves(F3) = {000, 001, 010} in Figure 3).

AAS notation. Note that assert(·) ensures a condition is true
or fails the calling function otherwise. Let Dom(f) be the
domain of a function f . We use f(x) = ⊥ to indicate x /∈
Dom(f). Let Si denote our AAS with i elements. Each node
w in the forest stores extractable accumulators aw, âw of its
BPT together with a Merkle hash hw. Internal nodes (i.e.,
non-roots) store a subset proof πw between aw and aparent(w).
The digest di of Si maps each root r to hr Every root r
stores a disjointness proof ψr between its BPT and BFT. For
simplicity, we give the server algorithms global access to many
of the variables above and indicate this by bolding the global
variable names in the algorithms.

Server algorithms. Setup(·) generates large enough q-PKE
public parameters PPq(s, τ) (see Section II), given an upper
bound β on the number of elements. Importantly, forgets the
trapdoors s and τ used to generate the public parameters. In
other words, this is a trusted setup phase.

Algorithm 1 Computes public parameters (trusted setup)
1: function Setup(1λ, β) → (pp, V K)
2: `← 2blog βc − 1 q ← λ` (G,GT , p, g, e(·, ·))← G(1λ)
3: s

$← Fp τ
$← Fp V K = ((gs

i
)λ+1
i=0 , g

τ ) . Picks trapdoors
4: return (((G,GT , p, g, e(·, ·)), β, q,PPq(s, τ)), V K)

Append(·) creates a new leaf ` for the element k (Lines 2
to 3). Recursively merges equal-sized BPTs in the forest,
as described in Section IV (Lines 5 to 9). In this process,
computes subset proofs between old BPT roots and the new

BPT. Merging ends when the newly created BPT w has no
equal-sized BPT to be merged with.

Algorithm 2 Appends a new element to the AAS
1: function Append(pp,Si, di, k) → (Si+1, di+1)
2: w ← binβ(i) Sw ← {k} . Create new leaf w for element k
3: (αw,aw, ·)← Accum(P (Sw)) hw ←H(w|⊥|aw|⊥)
4: . “Merge” old BPT roots with new BPT root (recursively)
5: while sibling(w) ∈ roots(Fi) do
6: `← sibling(w) p← parent(w) Sp ← S` ∪ Sw
7: (αp,ap, âp)← Accum(P (Sp)) hp = H(p|h`|ap|hw)
8: (π`, ·)← Accum(P (Sp \ S`))
9: (πw, ·)← Accum(P (Sp \ Sw)) w ← p

10: . Invariant: w is a new root in Fi+1. Next, sets w’s accumulator.
11: (φw,σw)← CreateFrontier(F (Sw))
12: (y, z)← ExtEuclideanAlg(αw, φw) ψw ← (gy(s), gz(s))
13: Store AAS state into Si+1 . i.e., persist bolded variables in Si+1

14: di+1(r)← hr,∀r ∈ roots(Fi+1) . Set new digest
15: return Si+1, di+1

16: function Accum(T )
17: α(x) ←

∏
w∈T (x−HF(w))

18: return (α, gα(s), gτα(s))

If k is in the set, ProveMemb(·) sends a Merkle path to k’s
leaf in some tree with root r (Lines 3 to 5) via ProvePath(·)
(see Algorithm 3) . This path contains subset proofs between
every node’s accumulator and its parent node’s accumulator. If
k is not in the set, then sends frontier proofs in each BFT in the
forest (Lines 6 to 8) via ProveFrontier(·) (see Algorithm 6).

Algorithm 3 Constructs a (non)membership proof
1: function ProveMemb(pp,Si, k) → (b, π)
2: Let ` ∈ leaves(Fi) be the leaf where k is stored or ⊥ if k /∈ Si
3: if k ∈ Si then . Construct Merkle path to element
4: Let r ∈ roots(Fi) be the root of the tree where k is stored
5: π ← ProvePath(Si, `, r,⊥) b← 1
6: else . Prove non-membership in all BFTs
7: χr ← ProveFrontier(Si, r, k), ∀r ∈ roots(Fi) b← 0
8: ∀r ∈ roots(Fi), b ∈ {0, 1}, π(r)← (ar, ·) π(r|b)← hr|b

9: return b, (`, π, (χr)r∈roots(Fi), (ψr)r∈roots(Fi))
10: function ProvePath(Si, u, r, π) → π . Precondition: r is a root in Fi
11: . Note: Will re-set π(w) set by previous ProvePath call (if any)
12: π(r)← (⊥,ar, âr,⊥)
13: π(w)← (⊥,aw, âw, πw), ∀w ∈ path[u, r)
14: . Note: Will not set π(sibling(w)) if already set from previous call!
15: for w ∈ path[u, r) s.t. sibling(w) /∈ Dom(π) do
16: π(sibling(w))← (hsibling(w),⊥,⊥)
17: return π

For each root r in Fi, ProveAppendOnly(·) sends a Merkle
path to an ancestor root in Fj , if any. To verify the proof,
VerAppendOnly(·) checks that each root r from Fi is a subset
of some root in Fj by checking subset proofs (Line 12)
via VerPath(·) (see Algorithm 5). VerAppendOnly(·) enforces
fork-consistency implicitly when verifying Merkle hashes.



Algorithm 4 Creates and verifies append-only proofs
1: function ProveAppendOnly(pp,Si,Sj ) → π
2: if roots(Fi) ⊂ roots(Fj) then return ⊥
3: Let r′ ∈ roots(Fj) be the ancestor root of old roots in Fi not in Fj
4: π ← ProvePath(Sj , r, r′, π),∀r ∈ roots(Fi)
5: return π
6: function VerAppendOnly(V K, di, i, dj , j, πi,j ) → {T, F}
7: assert di(r) 6= ⊥ ⇔ r ∈ roots(Fi) . Is valid version i digest?
8: assert dj(r) 6= ⊥ ⇔ r ∈ roots(Fj) . Is valid version j digest?
9: Let R = roots(Fi)− roots(Fj) be old roots with paths to new root

10: ∀r ∈ R, fetch hr from di(r) and update πi,j(r) with it
11: assert πi,j is well-formed Merkle proof for all roots in R
12: assert VerPath(dj , r, πi,j), ∀r ∈ R,

Client algorithms. If k is stored at leaf ` in the AAS,
VerMemb(·) reconstructs `’s accumulator from k. Then,
checks if there’s a valid Merkle path from ` to some root,
verifying subset proofs along the path (Lines 3 to 6) via
VerPath(·) (see Algorithm 5). If k is not in the AAS, verifies
frontier proofs for k in each BFT in the forest (Lines 7 to 12)
via VerFrontier(·) (see Algorithm 6).

Algorithm 5 Verifies a (non)membership proof
1: function VerMemb(V K, di, k, b, πk) → {T, F}
2: Parse πk as (`, π, (χr)r∈roots(Fi), (ψr)r∈roots(Fi))
3: if b = 1 then . Membership proof
4: (·, a`, â`)← Accum(P ({k})) h` ← H(`|⊥|a`|⊥)
5: Update π(`) with h` and accumulators a` and â`
6: assert π is Merkle path to leaf ` ∧ VerPath(di, `, π)
7: else . Non-membership proof
8: for all r ∈ roots(Fi) do . Check BFTs
9: (ar, ·)← π(r) hr|b ← π(r|b), ∀b ∈ {0, 1}

10: (or, ·)← χr(ε) (y, z)← ψr
11: assert di(r) = H(r|hr|0|ar|hr|1)
12: assert e(ar, y)e(or, z) = e(g, g) ∧ VerFrontier(k, χr)

13: function VerPath(dk, w, π) → {T, F}
14: Let r ∈ roots(Fk) denote the ancestor root of w
15: . Walk path invariant: u is not root node (but parent(u) might be)
16: for u← w; dk(u) = ⊥;u← parent(u) do
17: p← parent(u) . Check subset proof and extractability (below)
18: (·, au, âu, πu)← π(u) (·, ap, âp, ·)← π(p)
19: assert e(au, πu) = e(ap, g) ∧ e(au, gτ ) = e(âu, g)

20: assert dk(u) = MerkleHash(π, u) . Invariant: u is a root node
21: assert e(au, gτ ) = e(âu, g) . Is root accumulator extractable?
22: function MerkleHash(π,w) → hw
23: (hw, aw, ·, ·)← π(w)
24: if hw = ⊥ then
25: return H(w|MerkleHash(π,w|0)|aw|MerkleHash(π,w|1))
26: else
27: return hw

Frontier algorithms. Given a frontier set F , CreateFrontier(·)
creates its BFT level by level starting from the leaves. Given
a key k /∈ Si and a root r, ProveFrontier(·) returns a frontier
proof for k in the BFT at root r.

Algorithm 6 Manages BFT of a set
1: function CreateFrontier(F ) → (φ, σ)
2: . Create leaves with gs−HF(ρ) for each prefix ρ
3: i← 0 Sw ← ∅, ∀w
4: for ρ ∈ F do
5: w ← bin|F |(i) Sw ← ρ i← i+ 1
6: (φw, o, ô)← Accum(Sw) σ(w)← (o, ô)

7: . “Merge” children accumulators into a parent accumulator
8: for i← dlog |F |e; i 6= 0; i← i− 1 do
9: j ← 0 levelSize← 2i u← binlevelSize(0)

10: while Su 6= ∅ do
11: p← parent(u) Sp ← Su ∪ Ssibling(u) j ← j + 2

12: (φp, o, ô)← Accum(Sp) σ(p)← (o, ô) u← bin2
i
(j)

13: return (φε, σ)

14: function ProveFrontier(Si, r, k) → χ
15: Let ρ be the smallest prefix of k that is not in P (Sr)
16: Let ` denote the leaf where σr(`) = g(s−HF(ρ))

17: χ(ε)← σr(ε) . Copy root BFT accumulator
18: for w ∈ path[`, ε) do
19: χ(w)← σr(w)
20: if σr(sibling(w)) 6= ⊥ then
21: χ(sibling(w))← σr(sibling(w))
22: else
23: χ(sibling(w))← (g, gτ )

24: return χ
25: function VerFrontier(k, χ) → {T, F}
26: Let ` denote the leaf in χ with a prefix ρ for k
27: assert ρ ∈ P ({k}) ∧ g(s−HF(ρ)) = χ(`)
28: assert e(o, gτ ) = e(ôw, g) where (o, ô)← χ(ε)
29: for w ∈ path[`, ε) do
30: (cw, ĉw)← χ(w) (sw, ·)← χ(sibling(w))
31: (pw, ·)← χ(parent(w))
32: assert e(cw, sw) = e(pw, g) ∧ e(cw, gτ ) = e(ĉw, g)

VerFrontier(·) verifies a frontier proof for one of k’s pre-
fixes against a specific root BFT accumulator.

Theorem IV.1. Under the q-SBDH and q-PKE assumptions,
and assuming that H is a secure collision-resistant hash func-
tion, our construction is a secure AAS as per Definition III.1.

We prove Theorem IV.1 in Appendix B and analyze AAS
overheads from Table I asymptotically in Appendix C.

V. FROM APPEND-ONLY AUTHENTICATED SETS TO
APPEND-ONLY AUTHENTICATED DICTIONARIES

In this section, we turn our attention to constructing an
append-only authenticated dictionary (AAD). An AAD maps
a key k to a multiset of values V , but does so in an append-
only fashion. Specifically, once a value has been added to a
key, it cannot be removed nor changed. Compared to an AAS,
an AAD provides additional functionality: instead of simple
(non)membership queries for an element, AADs support more
elaborate queries of the form “return all the values associated
with key k.” This type of query occurs in many real-world
applications such as public-key directories where k is the
identity of a user and V are all the public keys of that user.

Our construction has great similarities with the AAS of
Section IV. However, the different functionality calls for
modifications. Indeed, even the security notion for AADs is
different. In an AAS, no malicious server can simultaneously
produce accepting proofs of membership and non-membership
for the same element e with respect to the same digest. In



contrast, in an AAD, no malicious server can simultaneously
produce accepting proofs for two different sets of values V, V ′

for a key k with respect to the same digest. This captures the
related notion for an AAS since one of the sets of values
may be empty (indicating k has never been registered in the
dictionary) and the other non-empty. We give full security
definitions for AADs in Appendix D. Next we describe how
we modify our construction from Section IV to get an AAD.

Encoding key-value pairs. An AAS construction can trivially
support key-value pairs (k, v) by increasing the size of the
domain of the underlying AAS from λ bits to 2λ bits so as to
account for the value v. That is, (k, v) would be inserted in the
AAS as k|v, using the same algorithms from Section IV-A.

Proving complete membership. Non-membership of a key k
remains the same as in the AAS: for each BFT in the AAD, the
server gives a frontier proof for a prefix of k (see Section IV).
In contrast, membership proofs change: in addition to giving a
membership proof for each value in some BPT, the server must
prove completeness by convincing the client it is not leaving
out any values of key k. For this, the server uses the same
frontier technique: it proves specific prefixes for the missing
values of k are not in the BPTs (and thus are not maliciously
being left out). This is best illustrated with an example.

Assume we have an AAD of size 2i with just one tree-
pair. Suppose the server wants to prove k = 0000 has
complete set of values V = {v1 = 0001, v2 = 0011}.
Consider a trie over k|v1 and k|v2 and note that F [k] =
{(0000|1), (0000|01), (0000|0000), (0000|0010)} is the set of
all frontier prefixes for the missing values of k. We call this
set the lower frontier of k relative to V . The key idea to prove
completeness is to prove all lower frontier prefixes are in the
BFT via frontier proofs (as discussed in Section IV). Note
that |F k| = O(λ) and each frontier proof is O(log n)-sized,
resulting in an O(λ log n)-sized proof.

This idea can be generalized to AADs of arbitrary size
which have (i) BPTs with no values for k, where the server
proves non-membership of k and (ii) BPTs with values for
k, where the server uses the above technique to prove BPT
i has complete set of values Vi. In that case, a complete
membership proof for a key k with a single value consists
of (1) an O(log n)-sized membership proof in some BPT, (2)
an O(λ log n)-sized completeness proof in its corresponding
BFT (as discussed above) and (3) an O(log n)-sized non-
membership proof for k in all other O(log n) BFTs.

Smaller completeness proofs. When k has one value, it
follows from above that a complete membership proof for k is
O(λ log n)-sized. However, we can easily decrease its size to
O(log2 n). Note that the main overhead comes from having to
prove that all O(λ) lower frontier prefixes of k are in a BFT.
The key idea is to group all of k’s lower frontier prefixes into a
single BFT leaf, creating an accumulator over all of them. As
a result, instead of having to send O(λ) frontier proofs (one
for each lower frontier prefix), we send a single O(log n)-
sized frontier proof for a single leaf (which contains all lower
frontier prefixes). We can generalize this idea: when k has |Vi|

values in the ith BFT in the forest, k’s lower frontier relative
to Vi has O(|Vi|λ) prefixes. Then, for each BFT i, we split the
lower frontier prefixes of k associated with Vi into separate
BFT leaves each of size at most 2λ+1. Importantly, we stress
that clients have enough public parameters to reconstruct the
accumulators in these BFT leaves (i.e., they have (gs

i

)2λ+1
i=0 ).

Supporting large domains and multisets. To handle keys
and values longer than λ bits, we store H(k)|H(v) in the
AAS (rather than k|v), where H is a collision-resistant hash
and we can retrieve the actual value v from another repository.
To support multisets (same v can be inserted twice for a k), the
server can insert H(H(v)|i) for the i-th occurrence of (k, v).

VI. EVALUATION

Our evaluation answers the following questions: How ex-
pensive is it to append to an AAD? Does batching appends
help? How large and expensive-to-verify are complete mem-
bership proofs? What about append-only proofs?

A. Codebase and experimental setup

We implemented our append-only authenticated dictionary
(AAD) construction in 5700 lines of C++. Specifically, we
implemented the amortized version of our construction whose
worst-case append time is O(λn log3(n)) while its amortized
append time is O(λ log3(n)). We used Zcash’s libff [67]
as our elliptic curve library with support for pairings, which
internally uses the ate-pairing library [68]. We use a 254-
bit Barretto-Naehrig curve with a Type III pairing [69]. We
used libfqfft [70] to multiply polynomials. We used Vic-
tor Shoup’s libntl [71] to interpolate polynomials, divide
polynomials and compute Bezout coefficients.

We ran our evaluation in the cloud on Amazon Web Services
(AWS). All experiments were run on an a r4.16xlarge instance
type with 488 GB of RAM and 64 VCPUs, running Ubuntu
16.04.4 (64-bit version). This instance type is “memory-
optimized” which, according to AWS, means it is “designed
to deliver fast performance for workloads that process large
data sets in memory.” Because we implement BPTs and BFTs
using pointers, we believe we require more memory than other
implementations (e.g. hash table-based implementations).

B. Append times

We start with an empty AAD, we append key-value pairs
to it and keep track of the cumulative average append-
time after every append. Recall that appends are amortized
in our construction (but can be de-amortized using known
techniques [35], [42]). As a result, in our benchmark some
appends are very fast (e.g., 25 milliseconds) while others are
painfully slow (e.g., 1.5 hours). To keep the running time of
our benchmark reasonable, we only benchmarked 213 = 8192
appends. We also investigate the effect of batching on append
times. When we batch k = 2i appends together, we only
compute one BFT for the full tree of size k created after
inserting the batch. In contrast, without batching, we compute
k BFTs for k appends (one for each new forest root created



(a) AAD complete membership (worst-case sizes) (b) AAD complete membership (average-case sizes) (c) AAD append times and append-only proofs

Fig. 4. These figures illustrate complete membership proof size and verification time for (a) worst-case dictionary sizes of 2i − 1, (b) for average-case
dictionary sizes of 10i, (c, down) append-only proof sizes and verification time between dictionaries of size 2i− 1 and 2i+1− 1, and (c, up) average append
time. We measured append times by inserting 213 = 8192 key-value pairs. Each line corresponds to a different experiment with a different batch size. A
larger batch size means BFTs are computed more rarely, which speeds up appends. Spikes in the graph occur every time two large trees in the forest are
merged, resulting in the (expensive) computation of a new BFT. The last spike corresponds to the last merge of the largest two trees, both of size 4096.

after an append). Figure 4c shows that the average append
time is 6 seconds, while batching can reduce it to 3 seconds.

The bottleneck for appends is computing the BFTs. To speed
this up, our implementation uses libff’s multi-threaded
multi-exponentiation to compute accumulators. However, there
are other opportunities for parallelization that our implemen-
tation does not explore. The first, is to parallelize computing
the polynomials on the same level in a BFT. The second, is to
parallelize computing the smaller accumulators at lower levels
of the BFT, where multi-threaded multi-exponentiation does
not help as much. The third, is to parallelize computing subset
proofs between a BPT and its children in the forest. Finally,
we can leverage techniques for distributed FFT to speed up
polynomial operations [72]. We believe these optimizations
can reduce the average append time to less than a second.

C. Complete membership proofs

We investigate three factors that affect membership proof
size (and thus verification time): (1) the dictionary size, (2)
the number of trees in the forest and (3) the number of values
of a key. Our results are summarized in Figures 4a and 4b.

1) Benchmark implementation: We take as input a dic-
tionary size n and create an AAD of that size. To speed
up the benchmark, instead of computing accumulators, we
simply pick them uniformly at random. (Note that this does
not affect the proof verification time.) We measure average
proof sizes for keys with ` values in an AAD of size n, where
` ∈ {0, 1, 2, 4, 8, 16, 32}. To get an average, we make sure
we insert 10 different keys with ` values, for each number
of values `. We call these keys target keys. The rest of
the inserted keys are random (and simply ignored by the
benchmark). Importantly, we randomly disperse the target key-

value pairs throughout the forest. We do this to avoid having
all the values of a key end up in consecutive forest leaves,
which would artificially decrease the proof size.

Once the dictionary reaches size n, we go through every
target key with ` values, compute its complete membership
proof, and measure the size and verification time. (Note that,
when ` = 0, we are measuring non-membership proofs.) Since
for each ` the AAD contains 10 different target keys with `
values, we obtain an average proof size and verification time.
We repeat the experiment for increasing dictionary sizes n and
summarize the numbers in Figures 4a and 4b. We stress that
proof verification is single-threaded in these benchmarks.

2) Worst-case versus best-case dictionary sizes: Recall that
some dictionary sizes will be “better” than others because
they have fewer trees in the forest. Membership proofs will
be smaller and will verify faster in these dictionaries. For
example, a dictionary of (worst-case) size 2i − 1 will have
i trees in the forest and thus i BFTs. Thus, when proving
membership of a key, the complete membership proof will
include i frontier proofs. In contrast, a dictionary of size 2i

only has a single tree in the forest, so a membership proof
needs only one frontier proof. Our evaluation shows that AADs
of size 10i (see Figure 4b.) have slightly smaller proof sizes
than AADs of size 2i − 1 (see Figure 4a). For example, for
size 1,000,000, the proof for a key with 32 values averages
95KB, while for size 220 − 1 the average is 118KB.

3) Memory consumption: Our complete membership proof
benchmark was the most memory-hungry: it consumed 263
GB of RAM for an AAD of size 220 − 1. Fortunately,
this benchmark did not require q-PKE public parameters,
which would have added another ~68 GBs of RAM. While
our prototype’s memory consumption could be improved, we



stress that the main overhead comes from the size of the BFTs
and the accumulators stored at each node. For example, in an
AAD of n = 220−1 key-value pairs, the BFT will have around
400n nodes. Since we are using Type III pairings, each node
stores three accumulators (two in G1 and one in G2) and the
memory consumption reaches 400n(32 · 2 + 64) bytes, which
is around 53 GBs. The rest of the overhead comes from our
own implementation’s use of pointers to implement trees and
other bookkeeping.

D. Append-only proofs

This benchmark appends random key-value pairs until it
reaches a target size n = 2i+1 − 1. Then, it measures the
size and verification time of the append-only proof between
the AAD of size n and an earlier one of size m = 2i −
1. Then, it repeats for the next target size n′ = 2i+2 − 1.
We plot the results in Figure 4c. We benchmarked on n =
2i − 1 AAD sizes because the proof size is logarithmic in n
(i.e. Θ(i)) so it illustrates worst-case append-only proof sizes.
Append-only proof verification is single-threaded. To speed up
the benchmark, we randomly pick accumulators in the forest.
Unlike the membership proof benchmark, this benchmark does
not need to compute BFTs and consumes only 12.5 GBs of
memory.

Our results show append-only proofs are reasonably small
and fast to verify. For example, the biggest proof between
AAD sizes 219 − 1 and 220 − 1 is 3.5 KB and takes a little
over 45 milliseconds to verify.

E. Comparison to Merkle tree approaches

How do AADs compare to Merkle prefix trees or History
Trees (HTs), which are used in CONIKS and Certificate
Transparency (CT) respectively? First of all, appends in AADs
are orders of magnitude slower because of the overheads
of cryptographic accumulators. However, we believe append
times can be made practical using parallelization (see Sec-
tion VI-B) and de-amortization techniques [35], [42].

1) Prefix trees: Complete membership proofs in prefix trees
are much smaller than in AADs. In a prefix tree of size 220,
a proof consisting of a Merkle path would be around 640
bytes. In comparison, our proofs for a key with 32 values are
152 times to 189 times more expensive (depending on the
number of forests in the tree). On the other hand, append-
only proofs in AADs are much smaller than in prefix trees.
(Asymptotically, the difference is logarithmic versus linear.) To
illustrate this, we implemented append-only proofs in prefix
trees in Golang [73] and benchmarked them. Our results show
that the append-only proof between an old prefix tree of size
219 and a new one of size 220 is 32 MB (as opposed to 3.5
KB in AADs). The proof gets a bit smaller when the size
gap between the dictionaries is larger but not by much. For
example, the proof between 105 and 106 is 14.6 MB.

2) History trees (HTs): Complete membership proofs in
history trees are O(n)-sized for an HT over n key-value pairs.
This is because, to guarantee completeness, the proof must
consist of all key-value pairs in the HT. Thus, our complete

membership proofs are orders of magnitude smaller. On the
other hand, append-only proofs in AADs are slightly larger
than in HTs. AAD append-only proofs have approximately
the same number of nodes as HT append-only proofs, but our
nodes store two additional accumulators: two BPT accumula-
tors in G1 and a subset proof in G2. As a result, the per-node
proof size increases from 32 bytes to 32 + 64 + 64 = 160
bytes, making our proofs 5 times larger.

3) Are AADs ever worth it?: Asymptotically, AADs out-
perform previous work because, unlike previous constructions
based on prefix or history trees, both append-only proofs
and complete membership proofs are polylogarithmic in the
dictionary size. But in practice, our evaluation shows AAD
proof sizes are still larger than ideal, especially complete
membership proofs. This begs the question: Is it ever worth
using AADs? We believe the answer is “yes”: even with large
complete membership proofs, the much-improved append-
only proof substantially decreases the practical bandwidth of
previous approaches such as CT logs and CONIKS.

Consider a messaging service for 1 billion users that uses
a CONIKS transparency log to deter impersonation attacks.
Suppose, a very small percentage of 0.001% of users reset
their PK in a day (i.e., 10,000 users). That means the directory
will have to create (more-or-less) 10,000 new Merkle roots in
one day. For a user to check his PK in the last version of the
directory, the CONIKS server will have to push a 30 · 32 =
960-byte membership proof per Merkle root to each one of
its 1 billion users. To support this, the CONIKS server needs
111.11 GBps of bandwidth.

Consider the same scenario as above but replace the
CONIKS log with an AAD so users no longer have to monitor
in every version of the directory. Instead users can safely fetch
the latest version of the directory via an append-only proof and
only check their PK in this latest version. This dramatically
reduces bandwidth for the server by decoupling the update
frequency of the directory from the monitoring frequency of
the users. Suppose that users checks their PK once per day and,
on average, a membership proof is 40 KB and an append-only
proof is 7 KB. Note that the membership proof of 40 KB is
even smaller than the one previously reported because the log
only needs to convince users no new PKs have been added
for them. Therefore, the proof consists of only frontier proofs.
Thus, the server needs to only push 47 KBs to each user every
day, resulting in only 544 MBps of bandwidth.

What about CT? The current ecosystem tracks over 2.1
billion certificates [19] across many different CT logs. Be-
cause the same certificate might be logged multiple times in
different logs, CT monitors must check every log to detect
impersonation. Recall that a CT monitor will download each
new certificate appended to a log, which we argue puts too
much bandwidth pressure on logs. This, in turn, limits the
number of CT monitors. For example, let us assume 30 million
websites want to monitor their own certificates in the system.
At the current rate of 12.37 certificates per second being added
to CT [19], with a mean size of 1.4 KB [33], this would require
99.5 GBps of combined bandwidth from CT logs. In contrast,



with AADs, if a membership proof is 40 KBs, an append-
only proof is 7KB, and domains monitor once an hour, then
the bandwidth is only 400 MBps.

VII. CONCLUSION

In this work, we introduced the first authenticated append-
only dictionary (AAD) that achieves polylogarithmic size for
all proofs. This allows users to audit the dictionary themselves
without resorting to third-party trusted auditors, a limitation
of previous work [10], [13], which defeats the purpose of
transparency. Our evaluation shows that AADs can help reduce
the bandwidth of CT and CONIKS by over 200×, from
hundreds of GBps down to hundreds of MBps. Finally, we
also introduced the first authenticated append-only set (AAS),
which is even more efficient than an AAD, and can be used
to implement Google’s Revocation Transparency (RT) [62].
Open problems. Our work leaves open a number of problems.
First, our construction requires a trusted setup phase. While
this can be securely executed in a distributed manner (e.g.,
via multi-party computation protocols [74], [75], as previ-
ously used to bootstrap the Zcash cryptocurrency [76]), it
would be interesting to explore whether the same asymptotic
performance can be achieved without trusted setup. Second,
can we build efficient AADs with polylogarithmic proof sizes
from standard assumptions, such as the existence of collision-
resistant hash functions? Finally, an interesting direction would
be to develop AADs with a “zero-knowledge” property which
guarantees that no information about the dictionary is leaked
during verification, other than the query response itself.
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APPENDIX

A. Cryptographic Assumptions

Our security analysis utilizes the following two crypto-
graphic assumptions over elliptic curve groups with bilinear
pairings.

Definition A.1 (q-SBDH Assumption). Given security pa-
rameter λ, bilinear pairing parameters 〈G,GT , p, g, e〉 ←
G(1λ), public parameters 〈g, gs, gs2 , . . . , gsq 〉 for some q =
poly(λ) and some s chosen uniformly at random from Z∗p,
no probabilistic polynomial-time adversary can output a pair
〈c, e(g, g)

1
s+c 〉 for some c ∈ Zp, except with probability

negligible in λ.

Definition A.2 (q-PKE Assumption). The q-power knowledge
of exponent assumption holds for G if for all probabilistic
polynomial-time adversaries A, there exists a probabilistic
polynomial time extractor χA such that for all benign auxiliary
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inputs z ∈ {0, 1}poly(λ)

Pr


〈G,GT , p, g, e〉 ← G(1λ); 〈s, τ〉 ← Z∗p;
σ ← 〈G,GT , p, g, e,PPq(s, τ)〉;

〈c, ĉ; a0, a1, . . . , aq〉 ← (A||χA)(σ, z) :

ĉ = cτ ∧ c 6= g
∏q
i=0 ais

i

 = negl(λ)

where 〈y1; y2〉 ← (A||χA)(x) means A returns y1 on input
x and χA returns y2 given the same input x and A’s random
tape. Auxiliary input z is required to be drawn from a benign
distribution to avoid known negative results associated with
knowledge-type assumptions [77], [78].

B. AAS Membership Security Proof Sketches

Membership and append-only correctness follow from close
inspection of the algorithms. Here, we provide proof sketches
for membership and append-only security, as well as fork-
consistency. Full proofs are delegated to the extended version
of the paper.
Membership security. Assume there exists polynomial-time
adversary A that produces digest d, element e and proofs π, π′,
of membership and non-membership respectively, such that
VerMemb(V K, d, e, 1, π) and VerMemb(V K, d, e, 0, π′) both
accept. We will now describe how A can either find a collision
in H or break the q-SBDH assumption.

Let k be the index of the BPT from the digest d involved
in the membership proof π. First, observe that π contains
accumulator values σ1, . . . , σk corresponding to the path from
e’s leaf to the root of the kth BPT. Next, let pk be the prefix
of e that is included in the frontier proof π′ for the k-th BFT.
Second, π′ contains accumulators a1, . . . , ak′ corresponding
to the path from pk’s leaf to the root of the kth BFT. (k′ may
be different than k because the BFT has different height than
the BPT.) Let σ∗k be the root accumulator for the kth BPT, as
contained in π′.

When verifying π and π′, both σk and σ∗k are hashed
(together with two other hash values, mapping to their corre-
sponding claimed children), and the result is checked against
the common hash hk ∈ d corresponding to the root of the kth
BPT. Since verification of π and π′ succeeds, if σk 6= σ∗k this
would imply a collision in H has been found.

Else, we argue as follows. Each accumulator σ1, . . . , σk is
accompanied by an extractability term σ′1, . . . , σ

′
k. As part of

membership verification, the client checks for each such pair
that e(σj , gτ ) = e(σ′j , g) for j = 1, . . . , k. Hence, from the
q-PKE assumption, it follows that for each σj there exists
a polynomial time algorithm that, upon receiving the same
input as A, outputs a polynomial Oj(x) (in coefficient form)
such that gOj(s) = σj with all but negligible probability.
The same holds for all accumulators a1, . . . , ak′ and terms
a′1, . . . , a

′
k′ included in π′, and let Qj′(x) denote the polyno-

mial corresponding to aj′ for j′ = 1, . . . , log(F (Sk)) where
Sk denotes the set of elements in the kth BPT. Finally, let
O0(x) =

∏
c∈P (e)(x − HF(c)) and O′0(x) = (x − HF(pk))

(both of which are computed by the verifier)
We distinguish the following two cases and analyze them

separately:

(a) (x−HF(pk)) - Ok(x) or (x−HF(pk)) - O′k(x)
(b) (x−HF(pk)) | Ok(x) and (x−HF(pk)) | O′k(x)

For case (a), without loss of generality we will focus on
the first sub-case, i.e., (x −HF(pk)) - Ok(x). (The proof for
the second sub-case proceeds identically.) First, let π1, . . . , πk
denote the subset proofs from the membership proof π (i.e.,
e(σi, g) = e(σi−1, πi−1),∀i ∈ [1, k]). Second, observe that,
by construction, (x−HF(pk)) | O0(x). Since, by assumption
(x−HF(pk)) - Ok(x), there must exist some index 0 < ξ < k
such that (x−HF(pk)) - Oξ(x) and (x−HF(pk)) | Oξ−1(x),
which can be efficiently deduced with access to all polyno-
mials Oj . Therefore, by polynomial division there exist effi-
ciently computable polynomials Qξ(x), Qξ−1(x) and integer
κ ∈ Zp such that: Oξ−1(x) = (x − HF(pk)) · Qξ−1(x) and
Oξ(x) = (x−HF(pk)) ·Qξ(x) + κ.

Based on the above, it must hold that:

e(σξ, g) = e(σξ−1, πξ−1)

e(gOξ(s), g) = e(gOξ−1(s), πξ−1)

e(g(s−HF(pk))·Qξ(s)+κ, g) = e(g(s−HF(pk))·Qξ−1(s), πξ−1)

e(g
Qξ(s)+

κ
(s−HF(pk)) , g) = e(gQξ−1(s), πξ−1)

e(g
κ

(s−HF(pk)) , g) = e(gQξ−1(s), πξ−1) · e(g−Qξ(s), g)

e(g
1

(s−HF(pk)) , g) =
[
e(gQξ−1(s), πξ−1) · e(g−Qξ(s), g)

]κ−1

.

Hence, the pair (HF(pk),
[
e(gQξ−1(s), πξ−1) · e(g−Qξ(s), g)

]κ−1

)
can be used to break the q-SBDH assumption.

In case (b), by assumption (x − HF(pk)) | Ok(x) and
(x−HF(pk)) | O′k(x). Therefore, by polynomial division there
exist efficiently computable polynomials Qξ(x), Qξ−1(x) such
that: Ok−1(x) = (x − HF(pk)) · Qξ−1(x) and Ok(x) =
(x − HF(pk)) · Qξ(x). Let δk = (∆1,∆2) be the proof of
disjointness embedded in π′ with respect to the roots accu-
mulator σk of the BPT and ak of the BFT. Since verification
succeeds, it holds that:

e(σk,∆1) · e(ak,∆2) = e(g, g)

e(gOk(s),∆1) · e(gO
′
k(s),∆2) = e(g, g)

e(g(s−HF(pk))·Qξ(s),∆1) · e(g(s−HF(pk))·Q′ξ(s),∆2) = e(g, g)

e(gQξ(s),∆1) · e(gQ
′
ξ(s),∆2) = e(g, g)

1
(s−HF(pk)) .

Thus, the pair (HF(pk), e(gQξ(s),∆1) · e(gQ
′
ξ(s),∆2)) can

again be used to break the q-SBDH assumption.
Append-only security. Append-only security can be proven
with the same techniques as the ones we used for membership
security. Let p be the prefix of e that is used to prove non-
membership with respect to di′ . The membership proof for
e with respect to di again involves a series of accumulators
for which the corresponding polynomials can be extracted. By
our previous analysis, (x−HF(p)) must divide the polynomial
extracted for the corresponding BPT root in di, otherwise
the q-SBDH assumption can be broken. Continuing on this
sequence of subset proofs, the append-only proof πa “con-
nects” this root accumulator to a root accumulator in di′ .



By the same argument (x − HF(p)) must also divide the
polynomial extracted for this BPT root. Since non-membership
also passed verification, the same holds with respect to the
extracted polynomial for the root of the corresponding BFT
in di′ , else again q-SBDH can be broken. Finally, we apply the
same argument as case (b) above, since (x −HF(p)) divides
both these polynomials and we have a disjointness proof for
their accumulators, again breaking q-SBDH.
Fork-consistency. Fork-consistency follows directly from the
collision-resistance of H. Assume two parties receive digests
di 6= d′i and subsequent digest dj such that VerAppendOnly
accepted when run on VerAppendOnly(V K, di, i, dj , j, πi)
and VerAppendOnly(V K, d′i, i, dj , j, π

′
i). In particular, sup-

pose that di, d′i disagree at BPT root r (there must exist at
least one such root). Let ar, a′r be the accumulators of r in
the two digests respectively and hr, h′r their respective hashes.

Since H is deterministic, it follows that ar 6= a′r. If hr = h′r
then this yields a collision in H. Else, we argue as follows.
Observe that the execution of MerkleHash (initiated at Line 21
of Algorithm 5) will perform a sequence of recursive hashes
where: (a) the innermost input includes hr when running
VerAppendOnly for di and h′r when running VerAppendOnly
for d′i , (b) the outermost hash is the same (the hash of the
root of their common BPT, as included in dj) in both cases,
and (c) the label w is the same for both the nodes r and
r′, corresponding to their common position in the BPT (as
designated by the old root’s label). The last is ensured while
checking that the Merkle proofs for all old roots are well-
formed (as part of VerAppendOnly) and the fact that node
labels are deterministically encoded based on append order.
Thus, the assertion at Line 21 implies finding a collision in
H.

C. AAS Asymptotic Analysis

Suppose we have a worst-case AAS with n = 2i − 1
elements. This AAS has i BPTs of size n/2, n/4, . . . , 1.
The BFTs corresponding to the BPTs will be of size
O(λn/2), O(λn/4), . . . , O(1).
Space. The space is dominated by the BFTs, which take up
O(λn/2)+O(λn/4)+ · · ·+O(1) = O(λn) space. (The BPTs
together only take up O(n) space.)
Membership proof size. Suppose an element e is in the AAS
in some BPT. To prove membership of e, we show a path from
e’s leaf in the BPT to the BPT’s root accumulator consisting
of constant-sized subset proofs at every node. Sine the largest
BPT in the forest has height log (n/2), the membership proof
is O(log n)-sized.
Non-membership proof size. To prove non-membership of
an element e, we show a frontier proof for a prefix of e in
every BFT in the forest. The largest BFT has O(λn) nodes
so frontier proofs are O(log (λn))-sized. Because there are
O(log n) BFTs, all the frontier proofs are O(log n log (λn)) =
O(log2 n)-sized.
Append-only proof size. Our append-only proof is O(log n)-
sized. This is because our proof consists of paths from each

old root in the old forest up to a single new root (excluding
common roots). Because the old roots are roots of adjacent
trees in the forest, there will be a single O(log n)-sized Merkle
path connecting the old roots to the new root. In other words,
our append-only proofs are similar to the append-only proofs
from history trees [9].

D. Append-only Authenticated Dictionary Definitions

Notation. Let |S| denote the number of elements in a multiset
S (e.g., S = {1, 2, 2} and |S| = 3). Let K be the set of all
possible keys and V be the set of all possible values. Formally,
a dictionary is a function D : K → P(V) that maps a key
k ∈ K to a multiset of values V ∈ P(V) (including the empty
set), where K ⊂ K and P(V) denotes all possible multisets
with elements from V . Thus, D(k) denotes the multiset of
values associated with key k in dictionary D. Let |D| denote
the number of key-value pairs in the dictionary or its version.
Appending 〈k, v〉 to a version i dictionary updates the multiset
V = D(k) of key to V ′ = V ∪{v} and increments the version
to i+ 1.

We use 〈k, v〉 ∈ D to denote that v is one of the values of
key k. We use k /∈ D to denote that key k has no value
in D (i.e., D(k) = ∅). We use k ∈ D to denote k has
some value(s) in D that we don’t know or care about. We use
D ⊆ D′ to indicate D is a subset of D′. Subset here means
that ∀k ∈ D,D(k) ⊆ D′(k). We often use Dn to denote a
dictionary of size n (i.e., |Dn| = n). We use Dn to denote
the authenticated version of Dn which stores implementation-
specific authentication information next to Dn. The ∈, /∈,⊆,⊇
notation used with a dictionary Dn can be used with its
authenticated version Dn.

Server-side API. The untrusted server managing the dictio-
nary implements:
Setup(1λ, β) → pp, V K. Randomized algorithm that re-
turns public parameters pp for the AAD scheme, which
include a verification key V K used by clients. Here, λ is a
security parameter and β is an upper-bound on the number
of elements n in the dictionary (i.e., n ≤ β). If the scheme
has a trapdoor, anyone in possession of the trapdoor can
break the security of the scheme (defined in Appendix D).
In that case, Setup(·) has to be run by a trusted entity who
promises to “forget” the trapdoor.

Append(pp,Di, di, k, v) → Di+1, di+1. Deterministic algo-
rithm that appends a new key-value pair 〈k, v〉 to the version
i dictionary creating a new version i+1 dictionary. Succeeds
only if the dictionary is not full (i.e., i + 1 ≤ β). Returns
the new authenticated dictionary Di+1 and its digest di+1.
Importantly, clients can verify the version number i + 1
claimed by the server in di+1.

ProveMemb(pp,Di, k) → V, πk,V . Deterministic algorithm
that proves complete membership for all values of key k, if
any. When Di(k) = V and V 6= ∅, generates a membership
proof πk,V that V is the complete multiset of values for key
k. When Di(k) = ∅, generates a non-membership proof
that key k has no values. Finally, the server cannot construct



a fake proof πk,V ′ for the wrong V ′, including for V ′ = ∅
(see Appendix D).

ProveAppendOnly(pp,Di,Dj) → πi,j . Deterministic algo-
rithm that proves Di ⊆ Dj (see notation in Appendix D).
Generates an append-only proof πi,j that all key-value pairs
in Di are also present and unchanged in Dj . Importantly,
a malicious server who removed or changed keys from Dj
that were present in Di cannot construct a valid append-only
proof (see Appendix D).

Client-side API. Clients implement:
VerMemb(V K, di, k, V, π) → {T, F}. Deterministic algo-

rithm that verifies proofs returned by ProveMemb(·) against
the digest di at version i of the dictionary. When V 6= ∅,
verifies that V is the complete multiset of values for key k,
ensuring no values have been left out and no extra values
were added. When V = ∅, verifies that key k is not mapped
to any value in the dictionary with digest di. (We formalize
security in Appendix D.)

VerAppendOnly(V K, di, i, dj , j, πi,j)→ {T, F}. Determinis-
tic algorithm that ensures a dictionary remains append-only.
Verifies that πi,j correctly proves that the dictionary with
digest dj is a superset of the dictionary with digest di (see
Appendix D). Also, verifies that di and dj are digests of
dictionaries at version i and j, respectively.

AAD Correctness and Security Definitions Consider
an ordered sequence of n key-value pairs (ki ∈
K, vi ∈ V)i∈[n]. Note that the same key (or key-
value pair) can occur multiple times in the sequence.
Let D′, d′ ← Append+(pp,D, d, (ki, vi)i∈[n]) denote a
sequence of Append(·) calls arbitrarily interleaved with
other ProveMemb(·) and ProveAppendOnly(·) calls such
that D′, d′ ← Append(pp,Dn−1, dn−1, kn, vn), Dn−1, dn−1
← Append(pp,Dn−2, dn−2, kn−1, vn−1), . . . , D1, d1 ←
Append(pp,D, d, k1, v1). Let Dn denote the corresponding
dictionary obtained after appending each (ki, vi)i∈[n] in order.
Finally, let D0 denote an empty dictionary with empty digest
d0.

Definition A.3 (Append-only Authenticated Dictionary).
(Setup, Append, ProveMemb, ProveAppendOnly, VerMemb,
VerAppendOnly) is a secure append-only authenticated dic-
tionary (AAD) if, ∀ security parameters λ, ∀ upper-bounds
β = poly(λ) and ∀n ≤ β it satisfies the following properties:

Complete membership correctness. ∀ sequences (ki ∈
K, vi ∈ V)i∈[n] with corresponding dictionary Dn, ∀ keys
k ∈ K,

Pr


(pp, V K)← Setup(1λ, β),

(D, d)← Append+(pp,D0, d0, (ki, vi)i∈[n]),
(V, π)← ProveMemb(pp,D, k) :

V = Dn(k) ∧ VerMemb(V K, d, k, V, π) = T

 = η(λ)

Observation: Note that this definition compares the returned
multiset V with the “ground truth” in Dn and thus pro-
vides complete membership correctness. Also, it handles non-
membership correctness since V can be the empty set. Finally,

the definition handles all possible orders of inserting key-value
pairs.
Complete membership security. ∀ adversaries A running in
time poly(λ),

Pr


(pp, V K)← Setup(1λ, β),

(d, k, V 6= V ′, π, π′)← A(pp) :
VerMemb(V K, d, k, V, π) = T ∧
VerMemb(V K, d, k, V ′, π′) = T

 = ε(λ)

Observation: This definition captures the lack of any “ground
truth” about what was inserted in the dictionary, since there
is no trusted source in our model. Nonetheless, given a fixed
digest d, our definition prevents all equivocation attacks about
the complete multiset of values of a key, including the special
case where the server equivocates about the key being present
(i.e., V 6= ∅ and V ′ = ∅). Note that this definition also
implies that different dictionaries cannot have the same digest.
Append-only correctness. ∀ sequences (ki ∈ K, vi ∈ V)i∈[n]
where n ≥ 2

Pr


(pp, V K)← Setup(1λ, β)

(Dm, dm)← Append+(pp,D0, d0, (ki, vi)i∈[m]),
(Dn, dn)← Append+(pp,Dm, dm, (kj , vj)j∈[m+1,n]),

π ← ProveAppendOnly(pp,Dm,Dn) :
VerAppendOnly(V K, dm,m, dn, n, π) = T

 = η(λ)

Append-only security. ∀ adversaries A running in time
poly(λ),

Pr


(pp, V K)← Setup(1λ, β)

(di, dj , i < j, πa, k, V 6= V ′, π, π′)← A(pp) :
VerAppendOnly(V K, di, i, dj , j, πa) = T ∧

VerMemb(V K, di, k, V, π) = T ∧
VerMemb(V K, dj , k, V

′, π′) = T

 = ε(λ)

Observation: This definition ensures that values can only be
added to a key and can never be removed or changed.
Fork consistency. This definition stays the same as in Sec-
tion III-B.
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