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Abstract

FULLY COUNTERING TRUSTING TRUST THROUGH DIVERSE DOUBLE-COMPILING
David A. Wheeler, PhD
George Mason University, 2009

Dissertation Directors: Dr. Daniel A. Menascé and Dr. Ravi Sandhu

An Air Force evaluation of Multics, and Ken Thompson’s Turing award lecture (“Reflections on
Trusting Trust”), showed that compilers can be subverted to insert malicious Trojan horses into
critical software, including themselves. If this “trusting trust” attack goes undetected, even
complete analysis of a system’s source code will not find the malicious code that is running.
Previously-known countermeasures have been grossly inadequate. If this attack cannot be
countered, attackers can quietly subvert entire classes of computer systems, gaining complete
control over financial, infrastructure, military, and/or business systems worldwide. This
dissertation’s thesis is that the trusting trust attack can be detected and effectively countered using
the “Diverse Double-Compiling” (DDC) technique, as demonstrated by (1) a formal proof that
DDC can determine if source code and generated executable code correspond, (2) a
demonstration of DDC with four compilers (a small C compiler, a small Lisp compiler, a small
maliciously corrupted Lisp compiler, and a large industrial-strength C compiler, GCC), and (3) a
description of approaches for applying DDC in various real-world scenarios. In the DDC

technique, source code is compiled twice: the source code of the compiler’s parent is compiled



using a trusted compiler, and then the putative compiler source code is compiled using the result of
the first compilation. If the DDC result is bit-for-bit identical with the original compiler-under-test’s
executable, and certain other assumptions hold, then the compiler-under-test’s executable corresponds

with its putative source code.



1 Introduction

Many software security evaluations examine source code, under the assumption that a program’s
source code accurately represents the executable actually run by the computer!. Naive developers
presume that this can be assured simply by recompiling the source code to see if the same

executable is produced. Unfortunately, the “trusting trust” attack can falsify this presumption.

For purposes of this dissertation, an executable that does not correspond to its putative source
code is corrupted?. 1If a corrupted executable was intentionally created, we can call it a
maliciously corrupted executable. The trusting trust attack occurs when an attacker attempts to
disseminate a compiler executable that produces corrupted executables, at least one of those
produced corrupted executables is a corrupted compiler, and the attacker attempts to make this
situation self-perpetuating. The attacker may use this attack to insert other Trojan horse(s)
(software that appears to the user to perform a desirable function but facilitates unauthorized

access into the user’s computer system).

1An executable is data that can be directly executed by a computing environment. An executable may
be code for an actual machine or for a simulated machine (e.g., a “byte code”). A common alternative term
for executable is “binary” (e.g., [Sabin2004]), but this term is misleading; in modern computers, a/l data is
represented using binary codes. For purposes of this dissertation, “object code” is a synonym for
“executable”. Source code is a representation of a program that can be translated into an executable, and is
typically human-readable. A compiler is an executable that when executed translates source code into an
executable (it may also perform other actions). An assembler is a compiler for a language whose
instructions are primarily a close approximation of the executing environment’s instructions. The process
of using a compiler to translate source code into an executable is termed compiling.

2An executable e corresponds to source code s if and only if execution of € always behaves as specified
by s when the execution environment of e behaves correctly.



Information about the trusting trust attack was first published in [Karger1974]; it became widely
known through [Thompson1984]. Unfortunately, there has been no practical way to fully detect
or counter the trusting trust attack, because repeated in-depth review of industrial compilers’

executable code is impractical.

For source code evaluations to be strongly credible, there must be a way to justify that the source
code being examined accurately represents what is being executed—yet the trusting trust attack
subverts that very claim. Internet Security System’s David Maynor argues that the risk of attacks
on compilation processes is increasing [Maynor2004] [Maynor2005]. Karger and Schell noted
that the trusting trust attack was still a problem in 2000 [Karger2000], and some technologists
doubt that computer-based systems can ever be secure because of the existence of this attack
[Gauis2000]. Anderson et al. argue that the general risk of subversion is increasing

[Anderson2004].

Recently, in several mailing lists and blogs, a technique to detect such attacks has been briefly
described, which uses a second (diverse) “trusted” compiler (as will be defined in section 4.3) and
two compilation stages. This dissertation terms the technique “diverse double-compiling”
(DDC). In the DDC technique, the source code of the compiler’s parent is compiled using a
trusted compiler, and then the putative compiler source code is compiled using the result of the
first compilation (chapter 4 further explains this). If the DDC result is bit-for-bit identical with
the original compiler-under-test’s executable, and certain other assumptions hold, then the
compiler-under-test’s executable corresponds with its putative source code (chapter 5 justifies this
claim). Before this work began, there had been no examination of DDC in detail which identified
its assumptions, proved its correctness or effectiveness, or discussed practical issues in applying

it. There had also not been any public demonstration of DDC.



This dissertation’s thesis is that the trusting trust attack can be detected and effectively countered
using the “Diverse Double-Compiling” (DDC) technique, as demonstrated by (1) a formal proof
that DDC can determine if source code and generated executable code correspond, (2) a
demonstration of DDC with four compilers (a small C compiler, a small Lisp compiler, a small
maliciously corrupted Lisp compiler, and a large industrial-strength C compiler, GCC), and (3) a

description of approaches for applying DDC in various real-world scenarios.

This dissertation provides background and a description of the threat, followed by an informal
description of DDC. This is followed by a formal proof of DDC, information on how diversity (a
key requirement of DDC) can be increased, demonstrations of DDC, and information on how to
overcome practical challenges in applying DDC. The dissertation closes with conclusions and
ramifications. Appendices have some additional detail. Further details, including materials

sufficient to reproduce the experiments, are available at:

http://www.dwheeler.com/trusting-trust/

This dissertation follows the guidelines of [Bailey1996] to enhance readability. In addition, this
dissertation uses logical (British) quoting conventions; quotes do not enclose punctuation unless
they are part of the quote [Ritter2002]. Including extraneous characters in a quotation can be

grossly misleading, especially in computer-related material [Raymond2003, chapter 5].


http://www.dwheeler.com/trusting-trust/

2 Background and related work

This chapter provides background and related work. It begins with a discussion of the initial
revelation of the trusting trust attack by Karger, Schell, and Thompson, including a brief
description of “obvious” yet inadequate solutions. The next sections discuss work on corrupted
or subverted compilers, the compiler bootstrap test, general work on analyzing software, and
general approaches for using diversity to improve security. This is followed by evidence that
software subversion is a real problem, not just a theoretical concern. This chapter concludes by
discussing the DDC paper published by the Annual Computer Security Applications Conference

(ACSAC) [Wheeler2005] and the improvements to DDC that have been made since that time.

2.1 Initial revelation: Karger, Schell, and Thompson

Karger and Schell provided the first public description of the problem that compiler executables
can insert malicious code into themselves. They noted in their examination of Multics
vulnerabilities that a “penetrator could insert a trap door into the... compiler... [and] since the PL/I
compiler is itself written in PL/I, the trap door can maintain itself, even when the compiler is
recompiled. Compiler trap doors are significantly more complex than the other trap doors...

However, they are quite practical to implement” [Karger1974].

Ken Thompson widely publicized this problem in his 1984 Turing Award presentation
(“Reflections on Trusting Trust”), clearly explaining it and demonstrating that this was both a

practical and dangerous attack. He described how to modify the Unix C compiler to inject a



Trojan horse, in this case to modify the operating system login program to surreptitiously give
him root access. He also added code so that the compiler would inject a Trojan Horse when
compiling itself, so the compiler became a “self-reproducing program that inserts both Trojan
horses into the compiler”. Once this is done, the attacks could be removed from the source code.
At that point no source code examination—even of the compiler—would reveal the existence of
the Trojan horses, yet the attacks could persist through recompilations and cross-compilations of
the compiler. He then stated that “No amount of source-level verification or scrutiny will protect
you from using untrusted code... I could have picked on any program-handling program such as
an assembler, a loader, or even hardware microcode. As the level of program gets lower, these
defects will be harder and harder to detect” [Thompson1984]. Thompson’s demonstration also
subverted the disassembler, hiding the attack from disassembly. Thompson implemented this
attack in the C compiler and (as a demonstration) successfully subverted another Bell Labs group,

the attack was never detected.

Thompson later gave more details about his demonstration, including assurances that the

maliciously corrupted compiler was never released outside Bell Labs [Thornburg2000].

Obviously, this attack invalidates security evaluations based on source code review, and
recompilation of source code using a potentially-corrupted compiler does not eliminate the risk.
Some simple approaches appear to solve the problem at first glance, yet fail to do so or have
significant weaknesses:

*  Compiler executables could be manually compared with their source code. This is

impractical given compilers’ large sizes, complexity, and rate of change.



*  Such comparison could be automated, but optimizing compilers make such comparisons
extremely difficult, compiler changes make keeping such tools up-to-date difficult, and
the tool’s complexity would be similar to a compiler’s.

* A second compiler could compile the source code, and then the executables could be
compared automatically to argue semantic equivalence. There is some work in
determining the semantic equivalence of two different executables [Sabin2004], but this
is very difficult to do in practice.

* Receivers could require that they only receive source code and then recompile everything
themselves. This fails if the receiver’s compiler is already maliciously corrupted; thus, it
simply moves the attack location. An attacker could also insert the attack into the
compiler’s source; if the receiver accepts it (due to lack of diligence or conspiracy), the
attacker could remove the evidence in a later version of the compiler (as further discussed
in section 8.4).

* Programs can be written in interpreted languages. But eventually an interpreter must be

implemented by machine code, so this simply moves the attack location.

2.2 Other work on corrupted compilers

Some previous papers outline approaches for countering corrupted compilers, though their
approaches have significant weaknesses. Draper [Draper1984] recommends screening out
maliciously corrupted compilers by writing a “paraphrase” compiler (possibly with a few dummy
statements) or a different compiler executable, compiling once to remove the Trojan horse, and
then compiling a second time to produce a Trojan horse-free compiler. This idea is expanded
upon by McDermott [McDermott1988], who notes that the alternative compiler could be a

reduced-function compiler or one with large amounts of code unrelated to compilation. Lee’s



“approach #2” describes most of the basic process of diverse double-compiling, but implies that
the results might not be bit-for-bit identical [Lee2000]. Luzar makes a similar point as Lee,
describing how to rebuild a system from scratch using a different trusted compiler but not noting
that the final result should be bit-for-bit identical if other factors are carefully controlled

[Luzar2003].

None of these papers note that it is possible to produce a result that is bit-for-bit identical to the
original compiler executable. This is a significant advantage of diverse double-compiling (DDC),
because determining if two different executables are “functionally equivalent” is extremely
difficult?, while determining if two executables are bit-for-bit identical is extremely easy. These
previous approaches require each defender to recompile their compiler themselves before using
it; in contrast, DDC can be used as an after-the-fact vetting process by multiple third parties,
without requiring a significant change in compiler delivery or installation processes, and without
requiring that all compiler users receive the compiler source code. All of these previous
approaches simply move the potential vulnerability somewhere else (e.g., to the process using the
“paraphrase” compiler). In contrast, an attacker who wishes to avoid detection by DDC must
corrupt both the original compiler and every application of DDC to that executable, so each
application of DDC can further build confidence that a specific executable corresponds with its

putative source code. Also, none of these papers demonstrate their technique.

Magdsick discusses using different versions of a compiler, and different compiler platforms such
as central processing unit (CPU) and operating system, to check executables. However,
Magdsick presumes that the compiler itself will be the same base compiler (though possibly a
different version). He does note the value of recompiling “everything” to check it

[Magdsick2003]. Anderson notes that cross-compilation does not help if the attack is in the

3Determining if two executables are equivalent is undecidable in general; see section 5.6.1.
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compiler [Anderson2003]. Mohring argues for the use of recompilation by GCC to check other
components, presuming that the GCC executables themselves in some environments would be
pristine [Mohring2004]. He makes no notice that all GCC executables used might be maliciously
corrupted, or of the importance of diversity in compiler implementation. In his approach different
compiler versions may be used, so outputs would be “similar” but not identical; this leaves the

difficult problem of comparing executables for “exact equivalence” unresolved.

A great deal of effort has been spent to develop proofs of correctness for compilers, either of the
compiler itself and/or its generated results [Dave2003] [Stringer-Calvert1998] [Bellovin1982].
This is quite difficult even for simple languages, though there has been progress.
[Leinenbach2005] discusses progress in verifying a subset C compiler using Isabelle/Higher
Order Logic (HOL). “Compcert” is a compiler that generates PowerPC assembly code from
Clight (a large subset of the C programming language); this compiler is primarily written using
the specification language of the Coq proof assistant, and its correctness (that the generated
assembly code is semantically equivalent to its source program) has been entirely proved within
the Coq proof assistant [Leroy2006] [Blazy2006] [Leroy2008] [Leroy2009]. [Goerigk1997]
requires formal specifications and correspondence proofs, along with double-checking of
resulting transformations with the formal specifications. It does briefly note that “if an
independent (whatever that is) implementation of the specification will generate an equal
bootstrapping result, this fact might perhaps increase confidence. Note however, that, in
particular in the area of security... We want to guarantee the correctness of the generated code,
e.g., preventing criminal attacks” [Goerigk1997, 17]. However, it does not explain what
independence would mean, nor what kind of confidence this equality would provide.
[Goerigk1999] specifically focuses on countering Trojan horses in compilers, through formal

verification techniques, but again this requires having formal specifications and performing
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formal correspondence proofs. Goerigk recommends “a posteriori code inspection based on
syntactic code comparison” to counter the trusting trust attack, but such inspection is very labor-
intensive on industrial-scale compilers that implement significant optimizations. DDC can be
dramatically strengthened by having formal specifications and proofs of compilers (which can
then be used as the trusted compiler), but DDC does not require them. Indeed, DDC and formal
proofs of compilers can be used in a complementary way: A formally-proved compiler may omit
many useful optimizations (as they can be difficult or time-consuming to prove), but it can still be

used as the DDC “trusted compiler” to gain confidence in another (production-ready) compiler.

Spinellis argues that “Thompson showed us that one cannot trust an application’s security policy
by examining its source code... The recent Xbox attack demonstrated that one cannot trust a
platform’s security policy if the applications running on it cannot be trusted” [Spinellis2003]. It
is worth noting that the literature for change detection (such as [Kim1994] and [Forrest1994]) and
intrusion detection do not easily address this problem, because a compiler is expected to accept

source code and generate object code.

Faigon’s “Constrained Random Testing” process detects compiler defects by creating many
random test programs, compiling them with a compiler-under-test and a reference compiler, and
detecting if running them produces different results [Faigon]. Faigon’s approach may be useful
for finding some compiler errors, but it is extremely unlikely to find maliciously corrupted

compilers.

2.3 Compiler bootstrap test

A common test for errors used by many compilers (including GCC) is the so-called “compiler

bootstrap test”. Goerigk formally describes this test, crediting Niklaus Wirth’s 1986 book



Compilerbau as proposing this test for detecting errors in compilers [Goerigk1999]. In this test,
if c(s,b) is the result of compiling source s using compiler executable b, and m is some other
compiler (the “bootstrap” compiler), then*:

1If m0 and s are both correct and deterministic, m is correct, m0=c(s,%),

ml=c(s,m0), m2=c(s,ml), all compilations terminate, and if the underlying

hardware works correctly, then mi1=m2.
The compiler bootstrap test goes through steps to determine if m1=m2; if not, there is a compiler
error of some kind. This test finds many unintentional errors, which is why it is popular. But
[Goerigk1999] points out that this test is insufficient to make strong claims, in particular, m1 may
equal m2 even if m, m0, or s are not correct. For example, it is trivial to create compiler source
code that passes this test, yet is incorrect, since this test only tests features used in the compiler
itself. More importantly (for purposes of this dissertation), if m is a maliciously corrupted
compiler, a compilation process can pass this test yet produce a maliciously corrupted compiler
m2. Note that the compiler bootstrap test does not consider the possibility of using two different
bootstrap compilers (m and m') and later comparing their different compiler results (m2 and m2")
to see if they produce the same (bit-for-bit) result. Therefore, the DDC technique is not the same
as the compiler bootstrap test. However, DDC does have many of the same preconditions as the
compiler bootstrap test. Since the compiler bootstrap test is popular, many DDC preconditions
are already met by typical industrial compilers, making DDC easier to apply to typical industrial

compilers.

2.4 Analyzing software

All programs can be analyzed to find intentionally-inserted or unintentional security issues (aka

vulnerabilities). These techniques can be broadly divided into static analysis (which examines a

4This is theorem 2 (the bootstrap test theorem) of [Goerigk1999]. For clarity, the text has been
modified so that its notation is the same as the notation used in this dissertation.
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static representation of the program, such as source code or executable, without executing it) and
dynamic analysis (which examines what the program does while it is executing). Formal
methods, which are techniques that use mathematics to prove programs or program models are

correct, can be considered a specific kind of static analysis technique.

Since compilers are programs, these general analysis techniques (both static and dynamic) that

are not specific to compilers can be used on compilers as well.

2.4.1 Static analysis

Static analysis techniques examine programs (their source code, executable, or both) without

executing them. Both programs and humans can perform static analysis.

There are many static analysis programs (aka tools) available; many are focused on identifying
security vulnerabilities in software. The National Institute of Science and Technology (NIST)
Software Assurance Metrics And Tool Evaluation (SAMATE) project (http://samate.nist.gov) is
“developing methods to enable software tool evaluations, measuring the effectiveness of tools
and techniques, and identifying gaps in tools and methods”. SAMATE has collected a long list of
static analysis programs for finding security vulnerabilities by examining source code or
executable code. There are also a number of published reports comparing various static analysis
tools, such as [Zitser2004], [Forristal2005], [Kratkiewicz2005], and [Michaud2006]. A draft
functional specification for source code analysis tools has been developed [Kass2006], proposing
a set of defects that such tools would be required to find and the code complexity that they must

be able to handle while detecting them.

Although [Kass2006] briefly notes that source code analysis tools might happen to find malicious

trap doors, many documents on static analysis focus on finding wunintentional errors, not
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maliciously-implanted vulnerabilities. [Kass2006] specifies a specific set of security-relevant
errors that have been made many times in real programs, and limits the required depth of the
analysis (to make analysis time and reporting manageable). [Chou2006] also notes that in
practice, static analyzers give up on error classes that are too hard to diagnose. For unintentional
vulnerabilities, this is sensible; unintentional errors that have commonly occurred in the past are
likely to recur (so searching for them can be very helpful). Unfortunately, these approaches are
less helpful against an adversary who is intentionally inserting malicious code into a program.
An adversary could intentionally insert one of these common errors, perhaps because they have
high deniability, but ensure that it is so complex that a tool is unlikely to find it. Alternatively, an
adversary could insert code that is an attack but not in the list of patterns the tools search for.
Indeed, an adversary can repeatedly use static analysis tools until he or she has verified that the

malicious code will not be detected later by those tools.

Static analysis tools also exist for analyzing executable files, instead of source code files. Indeed,
[Balakrishnan2005] argues that program analysis should begin with executables instead of source
code, because only the executables are actually run and source code analysis can be misled. To
address this, there are efforts to compute better higher-level constructs from executable code, but

in the general case this is still a difficult research area [Linger2006].

[Wysopal] presents a number of heuristics that can be used to statically detect some application
backdoors in executable files. This includes identifying static variables that “look like”
usernames, passwords, or cryptographic keys, searching for network application programmer
interface (API) calls in applications where they are unexpected, searching for standard date/time

API calls (which may lead to a time bomb), and so on. Unfortunately, many malicious programs
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will not be detected by such heuristics, and as noted above, attackers can develop malicious

software in ways that specifically avoid detection by the heuristics of such tools.

Many static analysis tools for executables use the same approach as many static analysis tools for
source code: they search for specific programs or program fragments known to be problematic.
The most obvious case are virus-checkers; though it is possible to examine behavior, and some
anti-virus programs are increasingly doing so, historically “anti-virus” programs have a set of
patterns of known viruses, which is constantly updated and used to search various executables
(e.g., in a file or boot record) to see if these patterns are present [Singh2002] [Lapell2006].
However, as noted in Fred Cohen’s initial work on computer viruses [Cohen1985], viruses can
mutate as they propagate, and it is not possible to create a pattern listing all-and-only malicious
programs. [Christodorescu2003] attempts to partially counter this; this paper regards malicious
code detection as an obfuscation-deobfuscation game between malicious code writers and
researchers, and presents an architecture for detecting known malicious patterns in executables
that are hidden by common obfuscation techniques. Even this more robust architecture does not

work against different malicious patterns, nor against different obfuscation techniques.

Of course, even if tools cannot find malicious code, detailed human review can be used at the
source or executable level if the software is critical enough to warrant it. For example, the Open
Berkeley Software Distribution (OpenBSD) operating system source code is regularly and
purposefully examined by a team of people with the explicit intention of finding and fixing
security holes, and as a result has an excellent security record [Payne2002]. The Strategic
Defense Initiative Organization (SDIO), now named the Missile Defense Agency (MDA), even

developed a set of process requirements to counter malicious and unintentional vulnerabilities,
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emphasizing multi-person knowledge and review along with configuration management and other

safeguards [SDIO1993].

Unfortunately, the trusting trust attack can render human reviews moot if there is no technique to
counter the attack. The trusting trust attack immediately renders examination of the source code
inadequate, because the executable code need not correspond to the source code. Thompson’s
attack subverted the symbolic debugger, so in that case, even human review of the executable
could fail to detect the attack. Thus, human reviews are less convincing unless the trusting trust

attack is itself countered.

Human review also presumes that other humans examining source code or executables will be
able to detect malicious code. In large code bases, this can be a challenge simply due to their size
and complexity. In addition, it is possible for an adversary to create source code that appears to
work correctly, yet actually performs a malevolent action instead. This dissertation uses the term
maliciously misleading code for any source code that is intentionally designed to look benign, yet
creates a vulnerability (including an attack). The topic of maliciously misleading code is further

discussed in section 8.11.

2.4.2 Dynamic analysis

It is also possible to use dynamic techniques in an attempt to detect and/or counter vulnerabilities
by examining the activities of a system, and then halting or examining the system when those
activities are suspicious. A trivial example is execution testing, where a small set of inputs are
provided and the inputs are checked to see if they are correct. However, dynamic analysis is

completely inadequate for countering the trusting trust attack.
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Traditional execution testing is unlikely to counter the trusting trust attack. Such attacks will only
“trigger” on very specific inputs, as discussed in section 3.2, so even if the executable is
examined in detail, it is extremely unlikely that traditional execution testing will detect this

problem.

Detecting at run-time arbitrary corrupted code in a compiler or the executable code it generates is
very difficult. The fundamental behavior of a corrupted compiler — that it accepts source code
and generates an executable — is no different from a uncorrupted one. Similarly, any malicious
code a compiler inserts into other programs can often be made to behave normally in most cases.
For example, a login program with a trap door (a hidden username and/or password) has the same
general behavior: It decides if a user may log in and what privileges to apply. Indeed, it may act

completely correctly as long as the hidden username and/or password are not used.

In theory, continuous comparison of an executable’s behavior at run-time to its source code could
detect differences between the executable and source code. Unfortunately, this would need to be
done all the time, draining performance. Even worse, tools to do this comparison, given modern
compilers producing highly optimized code, would be far more complex than a compiler, and

would themselves be vulnerable to attack.

Given an extremely broad definition of “system”, the use of software configuration management
tools and change detection tools like Tripwire [Kim1994] could be considered dynamic
techniques for countering malicious software. Both enable detection of changes in the behavior
of a larger system. Certainly a configuration management system could be used to record
changes made to compiler source, and then used to enable reviewers to examine just the
differences. But again, such review presupposes that any vulnerability in an executable could be

revealed by analyzing its source code, a presupposition the trusting trust attack subverts.
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A broader problem is that once code is running, some programs must be trusted, and at least some
of that code will almost certainly have been generated by a compiler. Any program that attempts
to monitor execution might itself be subverted, just as Thompson subverted the symbolic
debugger, unless there is a technique to prevent it. In any case, it would be better to detect and
counter malicious code before it executed, instead of trying to detect malicious code’s execution

while or after it occurs.

2.5 Diversity for security

There are a number of papers and articles about employing diversity to aid computer security,
though they generally do not discuss or examine how to use diversity to counter Trojan horses

inside compilers themselves or the compilation environment.

Geer et al. strongly argue that a monoculture (an absence of diversity) in computing platforms is a
serious security problem [Geer2003] [Bridis2003], but do not discuss employing compiler

diversity to counter this particular attack.

Forrest et al argue that run-time diversity in general is beneficial for computer security. In
particular, their paper discusses techniques to vary final executables by “randomized”
transformations affecting compilation, loading, and/or execution. Their goal was to automatically
change the executable (as seen at run-time) in some random ways sufficient to make it more
difficult to attack. The paper provides a set of examples, including adding/deleting nonfunctional
code, reordering code, and varying memory layout. They demonstrated the concept through a
compiler that randomized the amount of memory allocated on a stack frame, and showed that the
approach foiled a simple buffer overflow attack [Forrest1997]. Again, they do not attempt to

counter corrupted compilers.
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John Knight and Nancy Leveson performed an experiment with “N-version programming” and
showed that, in their experiment, “the assumption of independence of errors that is fundamental
to some analyses of N-version programming does not hold” [Knight1986] [Knight1990]. As will

be explained in section 4.7, this result does not invalidate DDC.

2.6 Subversion of software is a real problem

Subversion of software is not just a theoretical possibility; it is a current problem. One book on
computer crime lists various kinds of software subversion as attack methods (e.g., trap doors,
Trojan horses, viruses, worms, salamis, and logic bombs) [Icovel995, 57-58]. CERT? has
published a set of case studies of “persons who used programming techniques to commit
malicious acts against their organizations” [Cappelli2008]. Examples of specific software
subversion or subversion attempts include:

* Michael Lauffenburger inserted a logic bomb into a program at defense contractor
General Dynamics, his employer. The bomb would have deleted vital rocket project data
in 1991, including much that was unrecoverable, but another employee stumbled onto it
before it was triggered [AP1991] [Hoffman1991].

* Timothy Lloyd planted a 6-line logic bomb into the systems of Omega Engineering, his
employer, that went off on July 31, 1996. This erased all of the company’s contracts and
proprietary software used by their manufacturing tools, resulting in an estimated $12
million in damages, 80 people permanently losing their jobs, and the loss of their
competitive edge in the electronics market space. Plant manager Jim Ferguson stated
flatly, “We will never recover”. On February 26, 2002, a judge sentenced Lloyd to 41
months in prison, three years of probation, and ordered him to pay more than $2 million

in damages to Omega [Ulsh2000] [Gardian].

SCERT is not an acronym.
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Roger Duronio worked at UBS PaineWebber’s offices in Weehawken, N.J., and was with
the company for two years as a system administrator. Apparently dissatisfied with his
pay, he installed a logic bomb to detonate on March 4, 2002, and resigned from the
company. When the logic bomb went off, it caused over 1,000 of their 1,500 networked
computers to begin deleting files. This cost UBS PaineWebber more than $3 million to
assess and repair the damage, plus an undetermined amount from lost business. Duronio
was sentenced to 97 months in federal prison (the maximum per the U.S. sentencing
guidelines), and ordered to make $3.1 million in restitution [DoJ2006] [Gaudin2006b].
The attack was only a few lines of C code, which examined the time to see if it was the
detonation time, and then (if so) executed a shell command to erase everything
[Gaudin2006a].

An unnamed developer inside Borland inserted a back door into the Borland/Inprise
Interbase Structured Query Language (SQL) database server around 1994. This was a
“superuser” account (“politically”’) with a known password (“correct”), which could not
be “changed using normal operational commands, nor [deleted] from existing vulnerable
servers”. Versions released to the public from 1994 through 2001 included this back
door. Originally Interbase was a proprietary program sold by Borland/Inprise. However,
it was released as open source software® in July 2000, and less than six months later the
open source software developers discovered the vulnerability [Havrilla2001a]
[Havrilla2001b]. The Firebird project, an alternate open source software package based

on the same Interbase code, was also affected. Jim Starkey, who launched InterBase but

®Open source software is, briefly, software where users have the right to use the software for any
purpose, review it, modify it, and redistribute it (modified or not) without requiring royalty payments
[Wheeler2007]. The Open Source Definition [OSI2006] and the Free Software Definition [FSF2009] have
more formal definitions for this term or the related term “Free software”. There is quantitative data
showing that, in many cases, using open source software/Free software (abbreviated as OSS/FS, FLOSS, or
FOSS) is a reasonable or even superior approach to using their proprietary competition according to various
measures [Wheeler2007]. In almost all cases, it is commercial software [Wheeler2009f].
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left in 1991 before the back door was added to the software in 1994, stated that he
believed that this back door was not malicious, but simply added to enable one part of the
database software to communicate with another part [Shankland2001]. However, this
code had the hallmarks of many malicious back doors: It added a special account that was
(1) undocumented, (2) cannot be changed, and (3) gave complete control to the requester.
An unknown attacker attempted to insert a malicious back door in the Linux kernel in

%

2003. The two new lines were crafted to appear legitimate, by using an where a

“==" would be expected. The configuration management tools immediately identified a

discrepancy, and examination of the changes by the Linux developers quickly determined

that it was an attempted attack [Miller2003] [ Andrews2003].

More recently, in 2009 the Win32.Induc virus was discovered in the wild. This virus attacks

Delphi compiler installations, modifying the compiler itself. Once the compiler is infected, all

programs compiled by that compiler will be infected [Mills2009] [Feng2009]. Thus, countering

subverted compilers is no longer an academic exercise; attacks on compilers have already

occurred.

Many have noted insertion of malicious code into software as an important risk:

Many have noted subversion of software as an issue in electronic voting machines
[Saltman1988] [Kohno2004] [Feldman2006] [Barr2007].

The U.S. Department of Defense (DoD) established a “software assurance initiative” in
2003 to examine software assurance issues in defense software, including how to counter
intentionally inserted malicious code [Komaroff2005]. In 2004, the U.S. General
Accounting Office (GAO) criticized the DoD, claiming that the DoD “policies do not

fully address the risk of using foreign suppliers to develop weapon system software...

19



policies [fail to focus] on insider threats, such as the insertion of malicious code by
software developers...” [GAO2004]. The U.S. Committee on National Security Systems
(CNSS) defines Software Assurance (SwA) as “the level of confidence that software is
free from vulnerabilities, either intentionally designed into the software or accidentally
inserted at anytime during its lifecycle, and that the software functions in the intended
manner” [CNSS2006]. Note that intentionally-created vulnerabilities inserting during
software development are specifically included in this definition.

* The President’s Information Technology Advisory Committee (PITAC) found that
“Vulnerabilities in software that are introduced by mistake or poor practices are a serious
problem today. In the future, the Nation may face an even more challenging problem as
adversaries — both foreign and domestic — become increasingly sophisticated in their
ability to insert malicious code into critical software” [PITAC2005, 9]. The U.S.
National Strategy to Secure Cyberspace reported that a “spectrum of malicious actors can
and do conduct attacks against our critical information infrastructures. Of primary
concern is the threat of organized cyber attacks capable of causing debilitating disruption
to our Nation’s critical infrastructures, economy, or national security.... [and could
subvert] our infrastructure with back doors and other means of access.” [PCIB2003,6]

* In 2003, China's State Council announced a plan requiring all government ministries to
buy only locally produced software when upgrading, and to increase use of open source
software, in part due to concerns over “data spyholes installed by foreign powers” in

software they procured for government use [CNETAsia2003].

In short, as software becomes more pervasive, subversion of it becomes ever more tempting to

powerful individuals and institutions. Attackers can even buy legitimate software companies, or
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build them up, to widely disseminate quality products at a low price... but with “a ticking time

bomb inside” [Schwartaul994, 304-305].

Not all articles about subversion specifically note the trusting trust attack as an issue, but as noted
earlier, for source code evaluations to be strongly credible, there must be a way to justify that the
source code being examined accurately represents what is being executed—ryet the trusting trust
attack subverts that very claim. Internet Security System’s David Maynor argues that the risk of
attacks on compilation processes is increasing [Maynor2004] [Maynor2005]; Karger and Schell
noted that the trusting trust attack was still a problem in 2000 [Karger2000], and some
technologists doubt that computer-based systems can ever be secure because of the existence of
this attack [Gauis2000]. Anderson et al. argue that the general risk of subversion is increasing
[Anderson2004]. Williams argues that the risk from malicious developers should be taken
seriously, and describes a variety of techniques that malicious programmers can use to insert and

hide attacks in an enterprise Java application [Williams2009].

2.7 Previous DDC paper

Initial results from DDC research were published by the Annual Computer Security Applications
Conference (ACSAC) in [Wheeler2005]. This paper was well-received, for example, Bruce
Schneier wrote a glowing review and summary of the paper [Schneier2006], and the Spring 2006
class “Secure Software Engineering Seminar” of Dr. James Walden (Northern Kentucky

University) included it in its required reading list.

This dissertation includes the results of [ Wheeler2005] and refines it further:
* The definition of DDC is generalized to cover the case where the compiler is not self-

regenerating. Instead, a compiler-under-test may have been generated using a different
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“parent” compiler. Self-regeneration (where the putative source code of the parent and
compiler-under-test are the same) is now a special case.

A formal proof of DDC is provided, including a formalization of DDC assumptions. The
earlier paper includes only an informal justification. The proof covers cases where the
environments are different, including the effect of different text representation systems.

A demonstration of DDC with a known maliciously corrupted compiler is shown. As
expected, DDC detects this case.

A demonstration of DDC with an industrial-strength compiler (GCC) is shown.

The discussion on the application of DDC is extended to cover additional challenges,

including its potential application to hardware.
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3 Description of threat

Thompson describes how to perform the trusting trust attack, but there are some important
characteristics of the attack that are not immediately obvious from his presentation. This chapter
examines the threat in more detail and introduces terminology to describe the threat. This
terminology will be used later to explain how the threat is countered. For a more detailed model
of this threat, see [Goerigk2000] and [Goerigk2002] which provide a formal model of the trusting

trust attack.

The following sections describe what might motivate an attacker to actually perform such an
attack, and the mechanisms an attacker uses that make this attack work (triggers, payloads, and

non-discovery).

3.1 Attacker motivation

Understanding any potential threat involves determining the benefits to an attacker of an attack,
and comparing them to the attacker’s risks, costs, and difficulties. Although this trusting trust

attack may seem exotic, its large benefits may outweigh its costs to some attackers.

The potential benefits are immense to a malicious attacker. A successful attacker can completely
control all systems that are compiled by that executable and that executable’s descendants, e.g.,

they can have a known login (e.g., a “backdoor password”) to gain unlimited privileges on entire
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classes of systems. Since detailed source code reviews will not find the attack, even defenders

who have highly valuable resources and check all source code are vulnerable to this attack.

For a widely-used compiler, or one used to compile a widely-used program or operating system,
this attack could result in global control. Control over banking systems, financial markets,
militaries, or governments could be gained with a single attack. An attacker could possibly
acquire enormous funds (by manipulating the entire financial system), acquire or change

extremely sensitive information, or disable a nation’s critical infrastructure on command.

An attacker can perform the attack against multiple compilers as well. Once control is gained
over all systems that use one compiler, trust relationships and network interconnections could be
exploited to ease attacks against other compiler executables. This would be especially true of a
patient and careful attacker; once a compiler is subverted, it is likely to stay subverted for a long

time, giving an attacker time to use it to launch further attacks.

An attacker (either an individual or an organization) who subverted a few of the most widely used
compilers of the most widely-used operating systems could effectively control, directly or

indirectly, almost every computer in existence.

The attack requires knowledge about compilers, effort to create the attack, and access (gained
somehow) to the compiler executable, but all are achievable. Compiler construction techniques
are standard Computer Science course material. The attack requires the insertion of relatively
small amounts of code, so the attack can be developed by a single knowledgeable person. Access
rights to change the relevant compiler executables are usually harder to acquire, but there are

clearly some who have such privileges already, and a determined attacker may be able to acquire
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such privileges through a variety of means (including network attack, social engineering, physical

attack, bribery, and betrayal).

The amount of power this attack offers is great, so it is easy to imagine a single person deciding
to perform this attack for their own ends. Individuals entrusted with compiler development might
succumb to the temptation if they believed they could not be caught. Today there are many virus
writers, showing that many people are willing to write malicious code even without gaining the

control this attack can provide.

It is true that there are other devastating attacks that an attacker could perform in the current
environment. Many users routinely download and install massive executables, including large
patches and updates, that could include malicious code, and few users routinely examine
executable machine code or byte code. Few users examine source code even when they can
receive it, and in many cases users are not legally allowed to examine the source code. As a
result, here are some other potentially-devastating attacks that could be performed besides the
trusting trust attack:

* An attacker can find unintentional vulnerabilities in existing executables, and then write
code to exploit them.

* An attacker could modify or replace a widely-used/important executable during or after
its compilation, but before its release by its supplier. For example, an attacker might be
able to do this by bribing or extorting a key person in the supplying organization, by
becoming a key person, or by subverting the supplier’s infrastructure.

* Even when users only accept source code and compile the source code themselves, an
attacker could insert an intentional attack in the source code of a widely-used/important

program in the hope that no one will find it later.
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An attacker with a long-range plan could develop a useful program specifically so that
they can embed or eventually embed an attack (using the two attacks previously noted).

In such cases the attacker might become a trusted (but not trustworthy) supplier.

However, there is a fundamental difference with the attacks listed above and the trusting trust

attack: there are known detection techniques for these attacks:

Static and dynamic analysis can detect many unintentional vulnerabilities, because they
tend to be caused by common implementation mistakes. In addition, software designs
can reduce the damage from such mistakes, and some implementation languages can
completely eliminate certain kinds of mistakes. Many documents discuss how to develop
secure software for those trying to do so, including [Wheeler2003s] and [NDIA2008].

If an attacker swaps the expected executable with a malicious executable, without using a
trusting trust attack, the attack can be discovered by recompiling the source code to see if
it produces the same results (presuming a deterministic compiler is used). Even if it is
not discovered, recompilation of the next version of the executable will often eliminate
the attack if it is not a “trusting trust” attack.

If an attacker inserts an intentional attack or vulnerability in the source code, this can be
revealed by examining the source code (see section 8.11 for a discussion on attacks which
are intentionally difficult to find in source code).

If the user does not fully trust the supplier to perform such tests, then these tests could be
performed by the user (if the user has the necessary information), or by a third party who
is trusted by the user and supplier (if the supplier is unwilling to give necessary
information to the user, but are willing to give it to such a third party). If the supplier is

unwilling to provide the necessary information to either the user or a third party, the user
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could reasonably conclude that using such suppliers is a higher risk than using suppliers

who are willing to provide this information, and then take steps based on that conclusion.

In contrast, there has been no known effective detection technique for the trusting trust attack.
Thus, even if all of these well-known detection techniques were used, users would still be
vulnerable to the trusting trust attack. What is more, the subversion can persist indefinitely; the
longer it remains undetected, the more difficult it will be to reliably identify the perpetrator even

if it is detected.

Given such extraordinarily large benefits to an attacker, and the lack of an effective detection
mechanism, a highly resourced organization (such as a government) might decide to undertake it.
Such an organization could supply hundreds of experts, working together full-time to deploy
attacks over a period of decades. Defending against this scale of attack is far beyond the
defensive abilities of most companies and non-profit organizations who develop and maintain

popular compilers.

In short, this is an attack that can yield complete control over a vast number of systems, even
those systems whose defenders perform independent source code analysis (e.g., those who have

especially high-value assets), so it is worth defending against.

3.2 Triggers, payloads, and non-discovery

The trusting trust attack depends on three things: triggers, payloads, and non-discovery. For
purposes of this dissertation, a “trigger” is a condition determined by an attacker in which a
malicious event is to occur (e.g., when malicious code is to be inserted into a program). A
“payload” is the code that actually performs the malicious event (e.g., the inserted malicious code

and the code that causes its insertion). The attack also depends on non-discovery by its victims,
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that is, it depends on victims not detecting the attack (before, during, or after it has been

triggered)’.

For this attack to be valuable, there must be at least two triggers that can occur during
compilation: at least one to cause a malicious attack directly of value to the attacker (e.g.,
detecting compilation of a “login” program so that a Trojan horse can be inserted into it), and one

to propagate attacks into future versions of the compiler executable.

If a trigger is activated when the attacker does not intend the trigger to be activated, the
probability of detection increases. However, if a trigger is not activated when the attacker intends
it to be activated, then that particular attack will be disabled. If all the attacks by the compiler
against itself are disabled, then the attack will no longer propagate; once the compiler is
recompiled, the attacks will disappear. Similarly, if a payload requires a situation that (through
the process of change) disappears, then the payload will no longer be effective (and its failure

may reveal the attack).

In this dissertation, “fragility” is the susceptibility of the trusting trust attack to failure, i.e., that a
trigger will activate when the attacker did not wish it to (risking a revelation of the attack), fail to
trigger when the attacker would wish it to, or that the payload will fail to work as intended by the
attacker. Fragility is unfortunately less helpful to the defender than it might first appear. An
attacker can counter fragility by simply incorporating many narrowly-defined triggers and
payloads. Even if a change causes one trigger to fail, another trigger may still fire. By using

multiple triggers and payloads, an attacker can attack multiple points in the compiler and attack

"Even if the attack is eventually detected, if the attacker can be assured that the attack will not be
detected for a very long time, the attacker may still find it valuable. The attacker could, for example, use
this lengthy time to successfully perform other attacks and subvert an infrastructure in many other ways.
Also, if the original attack is not detected for a long time, it is often increasingly difficult to determine the
identity of the attacker or at least an important intermediary. For a summary of techniques that can resolve
this “attribution” problem, see [Wheeler2003t].
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different subsystems as final targets (e.g., the login system, the networking interface, and so on).
Thus, even if some attacks fail over time, there may be enough vulnerabilities in the resulting
system to allow attackers to re-enter and re-insert new triggers and payloads into a malicious
compiler. Even if a compiler misbehaves from malfunctioning malware, the results could appear
to be a mysterious compiler defect; if programmers “code around” the problem, the attack will

stay undetected.

Since attackers do not want their malicious code to be discovered, they may limit the number of
triggers/payloads they insert and the number of attacked compilers. In particular, attackers may
tend to attack only “important” compilers (e.g., compilers that are widely-used or used for high-
asset projects), since each compiler they attack (initially or to add new triggers and payloads)
increases the risk of discovery. However, since these attacks can allow an attacker to deeply
penetrate systems generated with the compiler, maliciously corrupted compilers make it easier for
an attacker to re-enter a previously penetrated development environment to refresh an executable
with new triggers and payloads. Thus, once a compiler has been subverted, it may be difficult to

undo the damage without a process for ensuring that there are no attacks left.

The text above might give the impression that only the compiler itself, as usually interpreted, can
influence results (or how they are run), yet this is obviously not true. Assemblers and loaders are
excellent places to place a trigger (the popular GCC C compiler actually generates assembly
language as text and then invokes an assembler). An attacker could place the trigger mechanism
in the compiler’s supporting infrastructure such as the operating system kernel, libraries, or

privileged programs.
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4 Informal description of Diverse Double-Compiling
(DDC)

The idea of diverse double-compiling (DDC) was first created and posted by Henry Spencer in
1998 [Spencer1998] in a very short posting. It was inspired by McKeeman et al’s exercise for
detecting compiler defects [McKeeman1970] [Spencer2005]. Since this time, this idea has been
posted in several places, typically with very short descriptions [Mohring2004] [Libra2004]
[Buck2004]. This chapter describes the graphical notation for describing DDC that is used in this
dissertation. This is followed by a brief informal description of DDC, an informal discussion of
its assumptions, a clarification that DDC does not require that arbitrary different compilers
produce the same executable output given the same input, and a discussion of a common special
case: Self-parenting compilers. This chapter closes by answering some questions, including:

Why not always use the trusted compiler, and why is this different from N-version programming?

4.1 Terminology and notation

This dissertation focuses on compilers. For purposes of this dissertation, compilers execute in
some environment, receiving as input source code as well as other input from the environment,

and producing a result termed an executable. A compiler is, itself, an executable.

Figure 1 illustrates the notation used in this dissertation. A shaded box shows a compilation step,
which executes a compiler (input from the top), processing source code (input from the left), and

uses other input (input from the right), all to produce an executable (output exiting down). To
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Compiler ¢,

Source Other
code s, > mput |

Compilation result:
compile(s,,c,,LE)

Figure 1: Illustration of graphical notation

distinguish the different steps, each compilation step will be given a unique name (shown here as
“n”). Source code that is purported to be the source code for the executable Y is notated as sy.
The result of a compilation step using compiler X, source code sy, other input I (e.g., run-time
libraries, random number results, and thread schedule), and environment E is an executable,
notated here as compile(sy, cx, [, E). Where the environment can be determined from context
(e.g., it is all the same) that parameter is omitted; where that is true and any other input (if
relevant) can be inferred, both are omitted yielding the notation compile(sy, cx). In some cases,

this will be further abbreviated as c(sy, cx).

The widely-used “T-diagram” (aka “Bratman”) notation is not used in this dissertation.
T-diagrams were originally created by Bratman [Bratman1961], and later greatly extended and
formalized by Earley and Sturgis [Earleyl1970]. T-diagrams can be very helpful when discussing
certain kinds of bootstrapping approaches. However, they are not a universally perfect notation,
and this dissertation intentionally uses a different notation because the weaknesses of T-diagrams

make DDC unnecessarily difficult to describe:
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T-diagrams combining multiple compilation steps can be very confusing
[Mogensen2007, 219]. This is a serious problem when representing DDC, since DDC is
fundamentally about multiple compilation steps.

T-diagrams quickly grow in width when multiple steps are involved; since paper is
usually taller than it is wide, this can make complex situations more difficult to represent
on the printed page. Again, applying DDC involves multiple steps.

T-diagrams do not handle multiple sub-components well (e.g., a library embedded in a
compiler). The notation can be “fudged” to do this (see [Early1970, 609]) but the
resulting graphic is excessively complex. Again, compilation of real compilers using
DDC often involves handling multiple sub-components, making this weakness more
important.

T-diagrams create unnecessary clutter when applied to DDC. In a T-diagram, every
compiler source code and compiler executable, as well as their executions, are
represented by a T. This creates unnecessary visual clutter, making it difficult to see what

is executed and what is not.

Niklaus Wirth abandoned T-diagrams in his 1996 book on compilers, without even mentioning

them [Wirth1996], so clearly T-diagrams are not absolutely required when discussing compiler

bootstrapping. The notation of this dissertation uses a single, simple box for each execution of a

compiler, instead of a trio of T-shaped figures. As DDC application becomes complex, this

simplification matters.

4.2 Informal description of DDC

In brief, to perform DDC, source code must be compiled twice. First, use a separate “trusted”

compiler to compile the source code of the “parent” of the compiler-under-test. Then, run that
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resulting executable to compile the purported source code of the compiler-under-test. Then,
check if the final result is exactly identical to the original compiler executable (e.g., bit-for-bit
equality) using some trusted means. If it is, then the purported source code and executable of the

compiler-under-test correspond, given some assumptions to be discussed later.

DDC Process Claimed Origin/Regeneration
* ¢, (Trusted Compiler) *CGP
SP # 1 SP » 01
* stagel * c,
Sa . 2 S, —> 02
&
stage2 ~ <--- -éégg& _________ » c,

Figure 2: Informal graphical representation of DDC

Figure 2 presents an informal, simplified graphical representation of DDC, along with the
claimed origin of the compiler-under-test (this claimed original process can be re-executed as a
check for self-regeneration). The dashed line labeled “compare” is a comparison for exact
equality. This figure uses the following symbols:
* ca: Executable of the compiler-under-test, which may be corrupt (maliciously corrupted
compilers are by definition corrupt).

*  sa: Purported source code of compiler ca. Our goal is determine if ¢4 and sa correspond.

* cp: Executable of the compiler that is purported to have generated c, (it is the purported
“parent” of c,).
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* sp: Purported source code of parent cp. Often a variant/older version of sa.

* cr: Executable of a “trusted” compiler, which must be able to compile sp.. The exact
meaning of “trusted” will be explained later.

* 1,2, 01, 02: Stage identifiers. Each stage executes a compiler.

* stagel, stage2: The outputs of the DDC stages. Stagel is a function of ¢t and sp, and can

be represented as c(sp, cr) where “c” means “compile”. Similarly, stage2 can be

represented as c(sa, stagel) or c(sa, c(sp, C1)).

The right-hand-side shows the process that purportedly generated the compiler-under-test
executable c, in the first place. The right-hand-side shows the DDC process. The process graphs
are very similar, so it should not be surprising that the results should be identical. This
dissertation formally proves this (given certain conditions) and demonstrates that this actually

occurs with real-world compilers.

Before performing DDC itself, it is wise to perform a regeneration check, which checks to see if
we can regenerate c, using exactly the same process that was supposedly used to create it
originally8. Since c, was supposed to have been created this way in the first place, regeneration
should produce the same result. In practice, the author has found that this is often not the case.
For example, many organizations’ configuration control systems do not record all the information
necessary to accurately regenerate a compiled executable, and the ability to perform regeneration
is necessary for the DDC process. In such cases, regeneration acts like the control of an

experiment; it detects when we do not have proper control over all the relevant inputs or

8DDC will not create an identical executable unless the regeneration check would succeed, and so from
that perspective the regeneration check is mandatory. Performing the regeneration check has not been
made mandatory, because there may be other evidence that it would succeed, but in most cases it is strongly
recommended.
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environment. Corrupted compilers can also pass the regeneration test, so by itself the

regeneration test is not sufficient to reliably detect corrupted compilers.

We then perform DDC by compiling twice. These two compilation steps are the origin of this
technique’s name: we compile twice, the first time using a different (diverse) trusted compiler.
All compilation stages (stage 1 and stage 2, as well as the regeneration test) could be performed
on the same or on different environments. Libraries can be handled in DDC by considering them
as part of the compiler (if they are executed in that stage) or part of the source code (if they are

used as input data but not executed in that stage).

Note that the DDC technique uses a separate trusted compiler as a check on the compiler-under-
test. The trusting trust attack assumes that all later generations of the compiler will be
descendants of a corrupted compiler; using a completely different second compiler can invalidate
this assumption. The trusted compiler and its environment may be malicious, as long as that does

not impact their result during DDC, and they may be very slow.

The formalized DDC model, along with formalized assumptions and its proof, are presented in

chapter 5.

4.3 Informal assumptions

All approaches have assumptions. These will be formally and completely stated later, but a brief
statement of some key assumptions should help in understanding the approach:

*  DDC must be performed only by trusted programs and processes, including a trusted

compiler cr, trusted environment(s) to run DDC, a trusted comparer, and trusted

processes and tools to acquire the compiler-under-test c, and the source code sp and s.
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In this dissertation, something is “trusted” if we have justified confidence that it does not
have triggers and payloads that would affect the results of DDC. A trusted program or
process may have triggers and payloads, as long as they do not affect the result. A trusted
program or process may have defects, though as shown later, any defects that affect its
result in DDC are likely to be detected. Methods to increase the level of confidence are
discussed in chapter 6.

Compiler cr must have the same semantics for the same constructs as required by sp. For
example, a Java™ compiler cannot be used directly as cr if sp is written in the C
language. If sp uses any nonstandard language extensions, or depends on a construct not
defined by a published language specification, then ¢r must implement them in the way
required by sp. Any defect in cr can also cause problems if it affects compiling sp
(otherwise it is irrelevant for DDC).

The compiler defined by sp should be deterministic given its inputs. That is, once
compiled, and then executed multiple times given the same inputs, it should produce
exactly the same outputs each time. If the compiler described by sp is non-deterministic,
in some cases it could be handled by running the process multiple times, but it is often
easier to control enough inputs to make the compiler deterministic. Note that the

regeneration process is helpful in detecting undesired non-determinism.

DDC does not determine if the source code is free of malicious code; DDC can only show if

source code corresponds to a given executable. If the goal is to show that the compiler c, is not

malicious, then the source code (sa and sp) must also be reviewed to determine that the source

code is not malicious. This is still an important change—it is typically far easier to review source

code than to review executables. In some cases s, and sp are extremely similar; in such cases they

36



can be simultaneously reviewed by reviewing one and then reviewing their differences. There is

also an important special case—when sp=s,—that is described in section 4.5.

But first, we must clarify that DDC does not require something that is unlikely.

4.4 DDC does not require that different compilers produce
identical executables

DDC does not require that arbitrary different compilers produce the same executable output, even
given the same input. Indeed, this would be extremely unlikely for source code the size of typical
compilers. Compiler executables ca, cp, and cr might even run on or generate code for different

CPU architectures, making identical results extremely unlikely.

Instead, DDC runs a different executable; under certain conditions, this must produce the “same”
result. This is perhaps best explained by example. Imagine two properly-working C compilers,

both of which are given this source code to print the result of calculating 2+2:

#include <stdio.h>
main () {

printf ("$d\n", 2+2);
}

The executables produced by the two compilers are almost certainly different, but running these
two programs on their respective environments must produce the same result for this line (once
converted into the same text encoding format). Obviously, this depends on them implementing

the same language (for the purposes of the given Source).

The conditions where this occurs are defined more formally in chapter 5. In particular, see

section 5.7.9, where this is examined in more detail.
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4.5 Special case: Self-parenting compiler

An important special case is when sp=s4, that is, when the putative source code of the parent
compiler is the same as the putative source code of the compiler-under-test. There are often good
reasons for releasing executables generated this way. For example, a compiler typically includes
many optimization operations; each new version of a compiler may add new or improved
optimization operations. By releasing a self-parented compiler (a compiler generated by setting
sp=s4 and compiling twice), the supplier would release a compiler executable that uses the latest
versions of those optimizations, giving the compiler itself maximum performance. Many existing
compilers (including as GCC) use the compiler bootstrap test (essentially the self-regeneration
check) to test themselves, so a compiler’s build and test process may already include an
automated way to create a self-parenting compiler. Figure 3 shows how figure 2 simplifies in this

casc.

Because this is a common case, the older paper [Wheeler2005] only considered this case. In
contrast, this dissertation considers the more general case, subsuming self-parenting as a special

casc.

Having a self-parenting compiler can simplify the application of DDC. As discussed in more
detail below, DDC only shows that source code and executable correspond, so review of compiler
source code is still required if the goal is to show that there is no malicious code in an executable.
In the general case, both s, and sp must be reviewed. Since s =sp in a self-parented compiler,
reviewing both s, and sp can be done by reviewing just sa, simplifying the use of DDC. Also,
when a compiler is its own parent, a simplified regeneration check may be used to detect many

problems without performing the complete regeneration test. This test, which can be termed
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Figure 3: Informal graphical representation of DDC for self-regeneration case

“self-regeneration”, simply uses c, to compile its putative source code s,; the regeneration is

successful if the generated executable is the same as the original c,.

It is still useful to be able to handle the general case. Compiler cp need not be a radically different
compiler; it might simply be an older version of ca, differ only in its use of different compilation
flags, or differ only in that it embeds a different version of a library executable. Nevertheless, if
cp and c, are different, the general form of DDC must be used. Also, it is possible to have a
“loop” of compilers that mutually depend on each other for self-regeneration (e.g., a Java
compiler written in C and a C compiler written in Java might be generated using each other). In

this case, the more general form of DDC is needed to break the loop.
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4.6 Why not always use the trusted compiler?

DDC uses a second “trusted” compiler cr, which is trusted in the sense that we have a justified
confidence that cr does not have triggers or payloads that affect recompiling sp and s, (see section

4.3). We can now answer an obvious question: Why not always use the trusted compiler ct?

First, there are many reasons compiler cr might not be suitable for general use. For example,
compiler cr may be slow, produce slow code, generate code for a different CPU architecture than
desired, be costly, or have undesirable software license restrictions. It may lack many useful
functions necessary for general-purpose use (in DDC, trusted compiler cr only needs to be able to
compile sp). It is possible that the only purpose of the trusted compiler is to operate as a trusted
checker for the more widely-used compiler, in fact, there are good reasons to do so. It is much
easier to verify (and possibly formally prove) a simple compiler that has limited functionality and
few optimizations; such compilers might not be suitable for general production use, but would be
ideal as trusted compilers used to check production compilers. The trusted compiler could even
be a “secret” compiler that is never publicly released (as source, executable, or a service); an
attacker would find it extremely difficult to avoid detection by DDC if such a trusted compiler

were used.

Second, using a different trusted compiler cr greatly increases the confidence that the compiler
executable ca corresponds with source code so». When a second compiler cr is used as part of
DDC, an attacker must subvert multiple executables and executable-generation processes to
perform the “trusting trust” attack without detection. It is true that the trusted compiler cr could
be used as a “trusted bootstrap” compiler that would always be used to generate each new version
of ca. This could be done even if cr is not suitable for general use. However, if we always

generate updated versions of c, this way, and never use DDC, we have merely moved the trusting
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trust attack to a different location: We must now perfectly protect cr and the bootstrap process
used to create each new version of c,. Should the protection of cr ever fail, an attacker might
change cr into a maliciously corrupted compiler ct’, resulting in the potential corruption of future
versions of cs. By using DDC with a different trusted compiler cr, cr is used as a separate check,
requiring an attacker to subvert two different compilers and compiler-generation processes to
avoid detection. Indeed, DDC could be performed multiple times using different compilers as ct
and/or different environments, requiring an attacker to subvert a// of the DDC processes to avoid
detection. Using DDC with a different compiler cr greatly increases the confidence that ca

exactly corresponds with s,; using DDC multiple times can increase that confidence still further.

4.7 Why is DDC different from N-version programming?

N-version programming “has been proposed as a method of incorporating fault tolerance into
software. Multiple versions of a program (i.e., ‘N’) are prepared and executed in parallel. Their
outputs are collected and examined by a voter, and, if they are not identical, it is assumed that the
majority is correct. This method [assumes] that programs that have been developed

independently will fail independently” [Knight1986].

John Knight and Nancy Leveson performed an experiment with N-version programming and
showed that, in their experiment, “the assumption of independence of errors that is fundamental
to some analyses of N-version programming does not hold” [Knight1986] [Knight1990]. Instead,
they found that if one program has a failure when processing a particular input, there was an
increased likelihood of failure (compared to random failure) for another program with the same
input, given that both programs were written to the same specification. This is an important
result. It is not hard to see why this might be true; for example, if certain areas of the

specification are unusually complex, two different programmers might both fail to meet it.
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However, this result does not invalidate DDC, because the circumstances in DDC are very

different from this and similar experiments.

In the Knight and Leveson work, N different programs were developed by different developers
attempting to implement the same specification. In contrast, the purpose of applying DDC is to
detect when two different compiler executables have been developed to implement different
specifications, that is, when one program is written to attempt to compile source code accurately,
while another program is written to produce corrupted results in certain cases. However:

* These changes are extremely unlikely to happen unintentionally (and in the same way) in
both the trusted compiler and the original process used to create the compiler-under-test.
Creating a corrupting compiler that is self-perpetuating and selectively corrupts other
programs requires clever programming [Thompsonl1984] and significantly changes the
compiler executable (for an example, see the differences shown in section A.5).

e These changes are extremely unlikely to happen intentionally in the trusted compiler and
DDC process in general. This is by definition of the term “trusted”—we have justified
confidence that the DDC process (including the trusted compiler) is unlikely to have
triggers or payloads that affect DDC results.

* Since the kind of differences that motivate DDC are extremely unlikely to occur

unintentionally or intentionally, the entire scenario is extremely unlikely.

Also, in the Knight and Leveson experiment, the issue was to determine if the different programs
would produce identical results across all permitted inputs to the different programs. Their
experiment simulated use of the N programs using one million test inputs, corresponding to about
twenty years of operational use “if the program is executed once per second and unusual events

occur every ten minutes”. In contrast, in DDC, there is only one relevant input: the source code
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pair sp and sa. Granted, these inputs will have a complex internal structure, but these are the only
inputs that matter, as compared to the wide range of possible inputs a compiler might accept.
Thus, in DDC we do not have the situation where there is a wide variety of potential test inputs;

we have only one pair of inputs, and they are the only ones that matter.

There is a special case where the Knight and Leveson results do directly apply to DDC. This is
when the original compiler and trusted compiler both fail to correctly compile the source code (sp
and s,), and this failure happens to produce the same results. DDC will not detect that both
compilers are performing incorrectly in the same way. The Knight and Leveson paper shows that
such program failures are not completely statistically independent, and thus this kind of failure is
somewhat more likely than an independence model would predict. However, there are several
reasons to believe that this special case is rare for mature compilers. First, mature compilers
typically pass a large test suite, reducing the risk of such defects. Second, compilers are usually
part of their own test suite, reducing the likelihood that a compiler will fail to correctly compile
itself. Third, section 7.1.3 demonstrates that even when a compiler fails to correctly compile
itself, DDC may still detect it. But all of this is beside the point. Since the purpose of applying
DDC is to detect intentional self-perpetuating attacks, and not to prove total correctness, this

special case does not invalidate the use of DDC to detect and counter the “trusting trust” attack.

Thus, the Knight and Leveson results do not invalidate DDC for the purpose of detecting and

countering the “trusting trust” attack.

4.8 DDC works with randomly-corrupting compilers

DDC works even if an ancestor of ¢, randomly corrupts its results. If the compiler-under-test was

not corrupted, DDC will correctly report this; otherwise, DDC will expose the corruption.
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5 Formal proof

This chapter presents a formal proof of DDC. The first section presents a more complete
graphical model of both the DDC process and how the compiler-under-test is claimed to have
been created. This is followed by a description of the formal notation used (first-order logic
(FOL) with equality), the rationales used in proof steps (aka the derivation rules or rules of
inference), the tools used, and various proof conventions. After this, the three key proofs are
presented. Each proof presents a set of predicates, functions, and assumptions about DDC in the
formal notation, and shows how they lead to the concluding proof goal. The three proofs are:

* Proof #1, goal source corresponds to executable: This is the key proof for DDC. It
shows that given certain assumptions, if stage2 (the result of the DDC process) and cx
(the original compiler-under-test) are equal, then the executable c, and the source code s,
exactly correspond.

*  Proof #2, goal always_equal: This proves that, under “normal conditions” (such as when
compiler executables have not been rigged and thus do correspond to their respective
source code), cy and stage2 are in fact always equal. Thus, the first proof is actually
useful, because its assumptions will often hold. This also implies that if c4 and stage2 are
not equal, then at least one of its assumptions is not true.

* Proof #3, goal cP corresponds to sP: The previous “always equal” proof does not
require that a “grandparent” compiler exist, but having one is a common circumstance.

This third proof shows that if there is a grandparent compiler, one of the assumptions of
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proof #2 can be proved given other assumptions that may be easier to verify (potentially

making DDC even easier to apply in this common case).

5.1 Graphical model for formal proof

Figure 4 graphically represents the DDC stages and how the compiler-under-test c, was
putatively created. This is a more rigorous version of figure 2; the formal model includes more
detail to accurately model potentially-different compilation environments and the effects these

environments have on the compilation processes.

DDC Process Claimed Origin

* ¢, (Trusted Compiler) *Cgp
( SP_> 1 e c]cffects Sp —l- ] e cPeflects
rllsglil)a ge (frorn el) (ﬁ'om eP)

+stagel + e
S

(langAua—ge> 2 a— c)effects S, m—-| 02 | cAcflects
IsA) (frome2) 5 (frome,)

* stage2 «"""";{\Q&' ...... » * C,

(run on eArun) ® (run on eArun)

Figure 4: Graphical representation of DDC formal model

This dissertation argues that if the DDC process produces a “stage2” that is identical to the ca,
and certain other assumptions are true, then the executable stage2 corresponds to the source code
sa. The similarity of the DDC process and claimed origin figures suggest that this might be
reasonable, but the challenge is to formalize exactly what those assumptions are, and then prove

that this is true from those assumptions.
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5.1.1 Types

Although types (sorts) are not directly used in the proof, it is easier to explain the graph and

proofs by assigning types to the various constants used. There are four basic types:

Data: For our purposes, data is information that is used as source code (input) and/or is

the resulting executable (output) of a compilation. Some of the data could be both source

and executable (e.g., a library object file could be executed during compilation and also

copied into the final executable). Thus, as implied by its definition, data can be either (or

both):

— Executable: Data that can be executed by a computing environment. Compilers
produce executables, and compilers themselves are executables.

— Source: Data that can be compiled by a compiler to produce an executable. Any
source (aka source code) is written in some language.

Environment: A platform that can run executables. This would include the computer

hardware (including the central processing unit) and any software that supports or could

influence the compiler’s result (e.g., the operating system). It could include a byte code

interpreter or machine simulator.

Language: The language, used by some source, that defines the meaning of the source.

Effects: All information or execution timing arising from the environment that can affect
the results of a compilation, but is not part of the input source code. This is used to
model random number generators, thread execution ordering, differences between
platforms allowed by the language, and so on. Note that this is not simply data in the

usual sense, since other issues such as thread execution ordering are included as effects.
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5.1.2 DDC components

The DDC process, as shown in figure 4, includes the following components, with the following
types and meanings:
* cr: Executable. The trusted compiler. It is trusted in the sense that it is trusted to not
have triggers or payloads that will activate when compiling source sp.
* sp: Source. The (putative) source code of the “parent” compiler.
* sa: Source. The (putative) source code of the compiler-under-test (ca).
* e¢l: Environment. The environment that executes compilation step 1, which uses c¢r to
compile sp and produce stagel.
* ¢2: Environment: The environment that executes compilation step 2, which uses stagel to
compile s, and produce stage?2.
* eArun: Environment: The environment that stage2 is intended to run on.
* IsP, IsA: Language. The languages used by source sp. and sa, respectively.
* eleffects: Effects. The effects sent from environment el to compilation step 1.
* e2effects: Effects. The effects sent from environment e2 to compilation step 2.
* stagel: Executable. The result of DDC compilation step 1. This will be defined, using
the functional notation below, as compile(sy, cr, eleffects, el, e2).
» stage2: Executable. The result of DDC compilation step 2. This will be defined as
compile(s,, stagel, e2effects, 2, eArun).
Note that s, may be equal to sp, €1 may be equal to e2 or eArun, €2 may be equal to eArun, and
IsA may be equal to IsP. These identities are permitted but not required by DDC. All processes

(including the compilations and their underlying environments, the process for acquiring c,, and
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the process for comparing c, and stage?) must be trusted (i.e., they must not have triggers or

payloads that affect their operation during DDC).

5.1.3 Claimed origin

The compiler-under-test c, was putatively developed by a similar process. This “claimed origin”
process can also be modeled, with the following components not already described in the DDC
process:
* cgp: Executable. The grandparent compiler, if there is one.
* ¢P: Environment. The environment that executes compilation step ol, which uses cgp to
compile source sp and produce executable cp.
* eA: Environment: The environment that executes compilation step 02, which uses cp to
compile s, and produce c,.
* cPeffects: Effects. The effects sent from ep to compilation step ol.
* cAeffects: Effects. The effects sent from e, to compilation step 02.
* cp: Executable. Putative parent compiler.
* ca: Executable. The compiler-under-test, which putatively was developed by the process

above.

Note that compiler-under-test ca may, in fact, be different than if it were really generated through
this process. But if ¢4 was generated through this process, we can prove that certain outcomes

will result, given certain assumptions, as described below.
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5.2 Formal notation: First-Order Logic (FOL)

The formal logic used in this dissertation is classical first-order logic (FOL) with equality, aka
first-order predicate logic. FOL was selected because it is a widely understood and accepted
formal logic system®. This dissertation uses the FOL notation and conventions defined in

[Huth2004, 93-139]. In FOL, every expression is a ferm or a formula.

A term (which denotes an object) is defined as: a variable, a constant, or a function application of

form f (Tl s Ty eees T,,) where each of the zero or more comma-separated parameters is a term. In

this dissertation, variables begin with an uppercase letter, while constants begin with a lowercase

letter (this is the same convention used by Prolog).

A formula (which denotes a truth value) is defined as: =P, DAY, dVY, d-V VXD,

T,=T,, T,;#T,, or a predicate of form p(t,,T,,...,T,) where each of the one or more comma-
separated parameters is a term. This definition requires that @ and ¥ are formulas, X is an

unbound variable, and anything beginning with T is a term.

In some sense, a formula is a boolean expression that represents true or false, while a term
represents any non-boolean type. Functions and predicates have the same syntax if they have any
parameters. Table 1 shows the traditional FOL notation for FOL expressions (terms and
formulas), an equivalent American Standard Code for Information Interchange (ASCII)

representation, and a summary of its meaning!?:

For an “analysis and interpretation of the process that led to First-Order Logic and its consolidation as
a core system of modern logic” see [Ferreir6s2001]. An alternative to classical logic is intuitionist logic,
which does not accept the equivalence of 7@ and @ as being universally true; [Hesseling2003] describes
in detail the early history of intuitionist logic.

10As a notation, FOL does have weaknesses. For example, predicates and functions cannot have
formulas (booleans) as parameters, so traditional FOL cannot express a function if then_else(formulal,
terml, term2) that returns term1 if formulal is true, else it returns term2. FOL also does not include built-
in support for types (sorts). There are extensions and alternatives which remove these weaknesses.
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Table 1: FOL notation

Traditional ASCII Meaning
Notation Representation
- - PHI not ®, aka negation. If @ is true, P is false; if P is false,
@ is true. 7P is equivalent to P.

dAY PHI & PSI @ and Y, aka conjunction, aka “logical and”. Both @ and ¥
must be true for the expression to be true.

AV 4 PHI | PSI @ or VP, aka disjunction, aka “logical inclusive or”. @, ¥, or
both must be true for the expression to be true.

d-YV PHI -> PSI @ implies ¥, aka implication, entailment, or “if @, then ¥”.
Equivalent to (—®)V Y.

VX all Chi PHI For-all, aka universal quantification. For all values of
variable X, @ is true. In this dissertation, this is optional; all
unbound variables are universally quantified.

T,=T, tau 1 =tau 2 7; equals T>. If true, 1, can substitute for 1.

T,#T, tau_1 !=tau 2 |z, is not equal to 1,. Bquivalentto 7(P=Y).

x(T,,T,, | x(tau_l,tau 2, ..., | Function or predicate x with terms T,,T,, ..., T,. A

tau_n)

predicate is like a function that returns a boolean.

Parentheses are used to indicate precedence. FOL also has a “there exists” notation (using 3)

which is not directly used in this dissertation. A formula is either true or false (this is the

principle of the excluded middle); thus, @V —® is true for any formula @. In this dissertation, a

top-level FOL formula is terminated by a terminating period (*.”).

For example, the following FOL formula could represent “all men are mortal”:

man (X) -> mortal (X).

This formula can be read as “for all values of X, if X is a man, then X is mortal”. Note that “X”

is a variable, not a constant, because it begins with a capital letter. Also note that since X is not

bound, an implied “all X ...” surrounds the entire formula.

However, since these FOL weaknesses do not interfere in the proof of DDC, and since traditional FOL is
both widely-understood and widely-implemented, FOL is used in this dissertation.
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In addition, the following formula could be used to represent “Socrates is a man”:

man (socrates) .

From these two formulas, it can be determined that “Socrates is mortal”:

mortal (socrates) .
FOL is a widely-used general notation, and not designed for proofs about specific fields (such as
compilation). Thus, as with most uses of FOL, additional “non-logical” symbols must be added
before particular problems can be analyzed. In this dissertation, these additions are the various
constant terms in the graphical model described in 5.1 (above), as well as various predicates and
functions that will be defined below. The proofs below will introduce these predicates and
functions, as well as various assumptions, and then show that certain important conclusions
(termed “goals”) can be formally proved from them. Some assumptions define a term, predicate,

or function; these assumptions are also called “definitions” in this dissertation.

All formal models, including the one in this dissertation, must include lowest-level items (such as
predicates, functions, and constants) that are not defined in the formal model itself. Therefore, it
is unreasonable to protest that these lowest-level items are not defined in this model, since that is
necessarily true. The key is that the lowest-level items should accurately model the real world,

thus forming a rational basis for proving something about the real world.

5.3 Proof step rationales (derivation rules or rules of inference)

Every step in each formal proof must have a rationale (aka a derivation rule or rule of inference).
In this dissertation, only the following rationales are permitted in the formal proofs (for clarity,
the terminating “.” in top-level formulas is omitted in this list):

*  Assumption: Given assumption. All definitions are assumptions.

*  Goal: The given goal to be proved.
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Clausify: Transform a previous step (formula) into a normalized clausal form. In
particular, all expressions of the form ®— ¥ are transformed into (-®)V¥. For
example, using the example in section 5.2, “man(X) -> mortal(X)” can be transformed
into “-man(X) | mortal(X)”. See [McCune2008] and [Duffy1991] for a detailed
description.

Copy...flip: Copy a previous result but reverse the order of an equality statement. Thus,
given @ =Y this rationale can produce ¥ =®.

Deny: Negate a previous step; this processes the goal statement. All formal proofs in this
chapter are proofs by contradiction; the goal is negated by the “Deny” rule, and the rest
of the proof shows that this leads to a contradiction.

Resolve: Resolution (aka general resolution), that is, produce a resolvant from two
clauses. Resolution is a generalized version of ground (propositional) resolution, so to
explain resolution, we will first explain ground resolution.

Ground resolution is a derivation rule that applies to clauses in propositional logic (a
simpler logic than FOL that lacks terms, predicates, functions, quantification (for-all and
there-exists), and equality; variables are true or false). Ground resolution requires two
ground clauses (formulas) which can be reordered into the forms AV® and A’ VY,
where A’ is a complement (negation) of formula A, and where @, ¥, or both may be
empty. From that, ground resolution can derive @ VY removing any duplicates (this
can be informally viewed as combining the two clauses with A and A’ “canceling” each
other). If both @ and ¥ are empty, the empty clause (false) is derived. For example,
given both PV Q and = PV R, ground resolution can derive Q V R. Ground resolution is

a sound rule for reasoning because any formula A must be either true or false: If A is
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false, and AV @ is true, then @ must be true. If A is true, then A’ is false, and since
A" VY is true, then ¥ must be true. Since either @ or ¥ must be true, it follows that
& VY is always true. The traditional logic rule modus ponens (given @ and @ — ¥, then
¥) is a special case of ground resolution; @ — ¥ can be rewritten (using clausify) as
—@ VY, and ground resolution can combine @ with =@V ¥ to derive V.

The full resolution rule extends ground resolution so that it can handle quantifiers and
predicates. It does this by using unification, the process of replacing the variables in the
expressions with terms to make the modified expressions identical to each other. For
details, see section 3.3 of [Duffy1991] or [Robinson2001].

For example, given “-man(X) | mortal(X)”, we can substitute “X=socrates” yielding
“-man(socrates) | mortal(socrates)”; this can then be combined with “man(socrates)” to
prove “mortal(socrates)”.

*  Para: Paramodulation, a rule that adds support for the equality relation. This replaces an
expression with another expression it is equal to, including any parameter substitutions.
For example, given “f(d, e, X)” and “f(A, B, C)=g(C, B, A)”, paramodulation can derive
“g(X, e, d)”. The precise definition of this rule is complex (e.g., it handles cases where
the equality holds only under certain conditions); for details, see section 3.3.7 of

[Duffy1991] or [Robinson2001].

These proof step rationales (aka derivation rules or rules of inference) were used because they are

the rationales supported by the selected proof tools.
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5.4 Tools and rationale for confidence in the proofs

5.4.1 Early DDC proof efforts

Early versions of these proofs were developed by hand. Unfortunately, it was very difficult to

rigorously check or amend those hand-created proofs!!.

The tool named Prototype Verification System (PVS) was then used for some time, in part
because it has a powerful notation that supports type-checking (which can eliminate some errors)
and higher-order logic [Owre2001]. At the time, it was thought that higher-order logic would be
especially helpful, since a compiler can be viewed as a computational function that produces a
computational function. However, while PVS is very good at what it does, and several proofs
were created using PVS, PVS required a large amount of manual effort to produce the proofs.
These early proofs showed that higher-order logic was not necessary or especially helpful in
modeling this particular problem, and that other logic systems and provers could be used instead.
Many other tools have less powerful notations (e.g., first-order logic without types) but can better

automate proof development.

5.4.2 Prover9, mace4, and ivy

The final proofs, as presented in this dissertation, were developed and checked with the assistance

of several related tools: prover9, mace4, and ivy:
* Prover9 is an automated theorem prover for first-order and equational (classical) logic,
which uses an ASCII representation of FOL. All of the proofs given in this chapter were

developed by prover9 version Aug-2007.

11 For example, the original hand-created proofs did not account for the possibility of different
environments. When attempting to modify the proofs to account for the different environments, the painful
“bookkeeping” required to keep the proof accurate soon led the author to look for an automated tool.
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* Mace4 is a tool paired with prover9 that searches for finite structures satisfying first-
order and equational statements (the same kind of statement that Prover9 accepts). From
a logic point of view, mace4 produces interpretations which are models of the input
formulas; from a mathematical point of view, mace4 produces structures satisfying the
input formulas. Put simply, mace4 tries to find an assignment of integers 0..n-1 (the
“domain”) to each constant term, to each function (given their possible inputs in the
domain), and true/false values for each predicate that will satisfy the given set of
statements. By default, mace4 starts searching for a structure of domain size 2, and then
it increments the size until it succeeds or reaches some limit.

* vy is a separate proof checker that can accept and verify the proof as output by prover9.
Ivy is written using A (sic) Computational Logic for Applicative Common Lisp (ACL2)
and has itself been proven sound using ACL2 [McCune2000]. All of the prover9 proofs
were verified by ivy. Indeed, one reason prover9 was chosen over some other tools was

the availability of ivy.

Far more detail about prover9 is provided in [McCune2008]; its general approach (in particular,
information on resolution and paramodulation) is discussed in detail in texts such as [Duffy1991]
and [Robinson2001]. For purposes of this dissertation, prover9 is given a set of assumptions and
a goal statement, using first-order logic (FOL) with equality. Prover9 negates the goal,
transforms all assumptions and the goal into simpler clauses, and then attempts to find a proof by
contradiction. Should prover9’s search algorithm find a proof, it can print the sequence of steps

and the rationale for each step that leads to the proof.
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5.4.3 Tool limitations

Unlike PVS, traditional FOL and the prover9 tool (which implements FOL) do not directly
support types (sorts). It is possible to implement types (sorts) using FOL: types of constants can
be declared as assertions (e.g., “executable(cA)” could represent “c, is an executable”), assertions
about compilers could be modified to state the types of compiler inputs and outputs, and the goal
could be extended to include type requirements. However, because prover9 does not directly
support type declaration, implementing types in prover9 makes the proofs far more complicated.
These complications do not add value, because the types of compiler input and output are not in
doubt (and thus do not need proof). In this dissertation types are only used as part of the

comments to clarify the proof results, and are not directly expressed in the proof notation.

It should be noted that these tools did not make creating the proofs trivial. In particular, prover9
can only find a proof given a correct goal and assumptions. When prover9 cannot prove a goal, it
either halts with a declaration that it cannot prove the result or it times out. In either case it is
often difficult to determine why the proof cannot be found. The companion tool mace4 may be
able to find a counter-example, but even then it is often not obvious what is wrong. In practice,
the proofs were developed by first creating very simplified models of the world, and then

expanding them stepwise to model additional complexities of the real world.

Prover9 will sometimes use information it does not need, leading to overly-complicated proofs.
To counteract this, each proof was developed separately and includes only the statements

necessary for the proof.
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5.4.4 Proofs’ conclusions follow from their assumptions

There are many reasons to have very high confidence that the formal proofs’ conclusions follow
from their assumptions:

*  The proofs were automatically generated by an automated tool, prover9. This eliminates
many opportunities for error caused by manual proofs.

* The generated proofs were verified by the separate tool ivy. Ivy cannot create proofs; it
is a simple program that checks that each step is correct. This cross-checking increases
the confidence that the proof is correct.

e vy itself has has been proven sound using ACL2.

e The source code for prover9, ivy, and ACL2 are all publicly visible under the terms of the
GNU General Public License (GPL). This public visibility enables widespread public
review.

*  The proofs were hand-verified by the author. They have also been reviewed by several

people at the Institute for Defense Analyses (IDA) and by the PhD committee members.

In short, there are good reasons to have very high confidence that these proofs correctly prove

their goals, given their assumptions.

5.4.5 Proofs’ assumptions and goals adequately model the world

A related question is whether or not the formally-stated assumptions are an adequately accurate
model of the real world. There are good reasons to believe this is also true:

* The assumptions have been proven to be consistent using mace4. In classical logic an

inconsistent set of assumptions can be used to prove any claim, so it is important that a

set of assumptions be consistent. If a set of first-order statements are simultaneously

57



satisfiable, then that set is consistent (see page 410 of [Stoll1979] for a proof of this
statement). The set of assumptions in each of the three proofs have been shown by the
mace4 tool to be satisfiable (i.e., for each proof mace4 can create a model that satisfies
the set of assumptions). Therefore, the assumptions used in each proof are consistent.
See appendix C for the mace4 models that show the assumptions are consistent. For
another example of a project that used mace4 to check for consistency, see
[Schwitter2006].

The assumptions and goals are based on the informal justification previously published in
the 2005 ACSAC paper [Wheeler2005]. This paper passed independent peer review
before its publication, and no one has refuted it since.

These assumptions and goals have been reviewed by the author, several people at the
Institute for Defense Analyses (IDA), and all of the dissertation committee members.

All of the outcomes from the demonstrations described in chapter 7 can be explained in
terms of these proofs.

The formalization process forced the author to clarify that three proofs were needed, not
just one. Originally, the author intended to only create one proof (proof #1), but as it was
developed, it became clear that multiple proofs were needed. This suggests that insight
was gained through the process of developing the formal proof, and an author who has
gained insight into the problem is more likely to produce final assumptions and goals that
adequately model the world.

The proofs clearly fit together. Proof #3 shows that if there is a benign environment and
a grandparent compiler, then cP_corresponds to sP (to be defined) is true. Proof #2
shows that if there is a benign environment and cP_corresponds to sP is true, then

stage2=ca. And finally, proof #1 shows that if stage2=c,, then c, and s, correspond.
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Therefore, there are good reasons to believe that these assumptions and goals adequately model

the real world.

5.5 Proof conventions

The notation of prover9 only supports simple ASCII text, and does not directly support the
Unicode characters for logic notation (such as —) nor subscripts (such as c,) by default. Thus,
the ASCII representation is used for all prover9 representations and results below. Constants
with subscripts are represented by simply appending the subscript value, e.g., c, is notated as cA.
Spaces and newlines are occasionally inserted to improve readability. All successful prover9
proofs end with the conclusion “$F” (false). This means that prover9 was able to find a
contradiction given the assumptions and the negation of the goal. Definitions are a kind of

b3

assumption; their names begin with “definition ” if they are of the form “constant =
EXPRESSION”, and begin with “define ” otherwise. In the prover9 proof, assumptions and

goals are assigned names using the prover9 “label” attribute (not shown in this dissertation).

Each of the proofs below begins with a formal statement (using FOL formulas) of the goal to be
proved, along with a textual explanation. This is followed by sections that introduce the required
predicates, functions, and assumptions, as well as restating the goal. The predicates and functions
are first described by showing in a fixed-width font the keyword “predicate” or “function”, the
predicate/function name, and its parentheses-surrounded parameters (using initial capital letters).
The assumptions (including definitions) and goal are first described using FOL formulas ending
with a period. Predicates, functions, and assumptions are each described further in explanatory
text. These are followed by a prover9 proof (verified by ivy), which shows in a table format how
the assumptions prove the goal (using proof by contradiction). The table includes the rationale

for each step. The prover9 proof is followed by additional discussion about that proof.
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5.6 Proof #1: Goal source_corresponds_to_executable

The key proof for DDC is to show that, if stage2 (the result of the DDC process) and c4 (the
original compiler-under-test) are equal, then the compiled executable c, and the source code s,
exactly correspond. This goal is easily represented by the following formula (using ASCII

representation) named source corresponds_to executable:

(stage2 = cA) -> exactly correspond(cA, sA, lsA, eArun).
As with all formal proofs in this dissertation, this proof introduces various predicates, functions,
and assumptions. Since this first proof is central to the entire dissertation, as each assumption is
introduced it will be shown how it builds toward the final goal. This is followed by a prover9

table (showing how the assumptions prove the final goal) and a brief discussion.

5.6.1 Predicate “=" given two executables

__9

The predicate (equal-to, aka equality) is part of the goal statement; it compares two

executables to determine if they are equal. It is an infix predicate with this form:

predicate Executablel = Executable2
For purposes of DDC, two executables are equal if they have exactly the same structure and
values as used by the environment when it runs either executable. When performing DDC, this
test for equality must occur in an environment that is trusted to accurately report on the equality
of two executables (i.e., the environment and program implementing this equality test must not
have triggers/payloads for the values tested), and the two executables being compared must have

been acquired in a trustworthy way.

In a traditional operating system with a filesystem, an executable would normally be one or more
files, where each file would be a stream of zero or more bytes as well as metadata controlling its

execution (including the set of attributes determining if and how to run the file). The sequence of
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bytes must be identical (the same length and at each position the same value), and the metadata
effecting execution must have the same effect in execution when transferred to its execution
environment (e.g., the “execution” flag or equivalent must have the same value so that they are
both executable). The “have the same effect” phrase is stated here because differences that are
not used by the environment during execution are irrelevant. In particular, many operating
systems record “date written” as part of the metadata, and this would typically not be the same
between different compilation runs. Nevertheless, as long as those differences do not effect
program execution, they do not matter. Indeed, if the differences are only compared in certain
ways, and those relationships are maintained, then they do not matter. Thus, if a “makefile”
compares dates, but only to determine which files came before or later, the specific dates do not
matter as long as the relationships are maintained. In practice, it is relatively easy to determine
what metadata has an effect by examining the source code s, and sp; if the source code does not
use it (directly or via calls to the environment), then given the other assumptions, the resulting
stage2 executable from DDC will not invoke them either. This is because the DDC process
(though not the original generation process) is required to not include triggers or payloads that

affect the execution process (as discussed in section 3.2).

If the executables are S-expressions!'?, the usual definition of S-expression equality is used:
Atoms are only equal to themselves (so 5=5), NIL is only equal to itself, and lists are equal iff
they have the same length and each of their elements are equal. NIL and an empty list are distinct

if and only if the execution environment can distinguish them. We presume S-expressions are

12¢S_expression” is short for “symbolic expression”. It is a convention for representing semi-structured
data in human-readable textual form, and is used for both code and data in Lisp. For our purposes, an S-
expression may be an atom (a number, symbol, or special term NIL) or a list; a list contains 0 or more
ordered S-expressions. The actual definition is more complex (involving CONS pairs), but this is not
important for purposes of this dissertation.
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written out as text and read back before use (otherwise there may be complications due to pointer

equivalence).

Note that equality is a stricter relationship than equivalence. Two executables may be considered
equivalent in an environment if they always produce equal outputs given equal inputs, even if
their internal structure and/or values are different. Two executables that are equal are always
equivalent, but equivalent executables need not be equal. = Unfortunately, determining if two
executables E1 and E2 are equivalent is undecidable in the general case. This is because if there
was any decision procedure D capable of determining equivalence, it could be invoked by E1 and
E2. If found equivalent they could perform different operations, and if found different they could
act the same [Cohen1984, part 4]. Even in very special cases it is often difficult to determine the
equivalence of two unequal executables. Instead of focusing on the difficult-to-determine
equivalence relationship, we will instead focus on the stricter equality relationship, which is a far
easier and more practical test to perform. Proof #2 and proof #3 will show that under certain
common conditions, two executables will be equal (not just equivalent), so limiting proof #1 to

equality does not significantly limit its practical utility.

5.6.2 Predicate exactly_correspond

The goal statement makes no sense unless the predicate “exactly correspond” is defined.

Predicate “exactly correspond” has the following parameters:

predicate exactly correspond(Executable, Source, Lang, RunOn)
This predicate is defined to be true if, and only if, the Executable exactly implements source code
Source when (1) that Source is interpreted as language Lang and (2) the Executable is run on
environment RunOn. For this predicate to be true, the Executable must not do anything more,

anything less, or anything different than what is specified by Source (when interpreted as
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language Lang). Note that this does not require that Source is a perfect implementation of some
abstractly-defined language. In section 5.6.8 we will define a condition that will make the

predicate exactly correspond true.

5.6.3 Predicate accurately_translates

A related predicate that must be defined is accurately translates, with these parameters:

predicate accurately translates(Compiler, Lang, Source, EnvEffects,
RunOn, Target)

This predicate is true if and only if the Compiler (an executable) correctly implements language
Lang when compiling a particular Source and given input EnvEffects (from the environment),
when it is run on environment RunOn and targeting environment Target. The Target is the
environment that the compiler generates code for (which need not be the same as the environment
the compiler runs in). The EnvEffects parameter models variations in timing and inputs from the
environment, and will be explained further in the definition of the “compile” function in section

5.6.5.

5.6.4 Assumption cT_compiles_sP

We must assume that the trusted compiler cr is a compiler for language IsP (the language used by
source code sp), that cr will accurately translate sp when run in environment el, and that cr targets

(generates code for) environment e2. This assumption is named cT compiles_sP:

all EnvEffects accurately translates(cT, 1sP, sP, EnvEffects, el, e2).
In short, cr has to accurately implement the language IsP, at least sufficiently well to compile sp.
Otherwise, cr can’t be used to compile sp. For example, if sp was written in C++, then a Java
compiler cannot be directly used as the trusted compiler cr. Compiler cr must not have triggers or

payloads that activate when compiling sp. Neither el=e2 nor el#e2 is asserted; thus, el may but
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need not be the same as e2. The “all” in the formal statement is optional, but is included here for

emphasis.

5.6.4.1 Implications for the language

This proof could have been created without mentioning languages at all; the formal model could
simply require that (1) cr will accurately translate sp when run in environment el and that (2) cr
targets (generates code for) environment e2. However, it would have been easy to misunderstand
the proof results. For example, without noting the different languages, the proof could be easily
misunderstood as requiring that all compilers implement the same language. Noting the
languages clarifies that they can be different, and clarifies that the languages should be
considered when performing DDC. Including the languages in the proofs also provides a check
on the proof that is similar to type-checking: The proof requires that in each compilation, the

compiler used must support the language of the source code used as input.

The language IsP must include all of the syntactic and semantic requirements necessary to
correctly interpret sp. It may, but need not, include additional requirements not required to
interpret sp (as long as they do not interfere with interpreting sp). In particular, IsP need not be the
same as the language documented in an official (e.g., standardized) language specification, even
if one exists. For example:
* IsP may omit any requirements in an official specification, as long as the source code
does not require them. So an official specification may include support for threading or
floating point numbers, but if they are not needed when compiling the source code, then

they can be safely omitted from IsP.
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* IsP may impose additional requirements that are explicitly left undefined in an official
specification. For example, if an official language specification permits certain
operations to be done in an arbitrary order (such as right-to-left or left-to-right evaluation
of function parameters), but the given source code requires a particular order of
evaluation, then IsP must add the additional ordering requirement. Such additional
requirements, if any, should be included in the source code’s documentation. It is usually
better if the source code only requires what an official language specification guarantees,
because there are likely to be more alternative compilers. But it’s quite common for
compiler sources to make assumptions that are not guaranteed by official specifications,
and DDC can still be used in such cases.

* IsP may impose additional length or size requirements than those imposed by an official
specification. For example, if the source code requires support for certain identifier
lengths, depth of parentheses, or size of result, then IsP includes those requirements.

* [f IsP includes ambiguous requirements, or requirements that are not fully defined, then
those ambiguities or inadequate definitions must not matter when compiling the source
code.

* IsP may add various extensions as requirements that are not part of the official
specification. Unsurprisingly, if the source code requires extensions, then the compiler
used to compile that source code must somehow support those extensions.

* IsP could even directly contravene an official specification on certain issues; what matters

is what is required to correctly compile the source code.

The language IsP need not be formally specified, nor must it exist as a single document. If

expressed, it is likely to take the form of a reference to an existing language standard combined
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with a description of the permitted omissions, the changes, and the additions. For proof purposes,
the language specification need not be written at all; all that is required is that the compilers and
source code conform if it were written. Of course, if the specification is not written, it is difficult

to check for compliance to it.

The “language” may even be a set of languages, including a language for selecting which other
language to use (e.g., the file extension conventions used for selecting between languages). For
example, GNAT (whose name is no longer an acronym) is an Ada compiler whose front-end is
written in Ada, but the rest of the compiler is written in C. A trusted compiler suite for GNAT
would need to be able to compile both Ada and C, as well as correctly process the file extension

conventions used by the GNAT source code to differentiate between languages.

5.6.4.2 Implications for the trusted compiler and its environment

Compiler ¢r need not implement a whole language, as defined by an official language
specification—it only needs to implement what is required to compile sp. So cr may be a very
limited compiler. In some cases, some compiler ¢, may only be suitable for use as a part of
trusted compiler cr if the source code goes through a preprocessor, or if the resulting executable
goes through a postprocessor. For example, a preprocessor may be needed to convert
nonstandard constructs into constructs that co can handle, or perhaps ¢, implements a different
specification. In this case, the compiler cr is the combination of the preprocessor and cq. In
theory there’s no limit to how many steps can be chained together to construct cr, but since they
are all part of the trusted compiler they must be sufficiently trustworthy to meet the assumptions
of the proof. In practice, these steps (including the use of preprocessors and postprocessors)

should be limited, to limit the number and size of tools that are granted such trust.
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Note that the trusted compiler (cr) and the environment it executes on (el) do not need to be
completely defect-free nor non-malicious. This is important, since defect-free compilers and
environments are rare, and ensuring absolute non-maliciousness is difficult. Compiler cr or
environment el may be full of bugs, and/or full of triggers and payloads for inserting corrupted
code into other programs (including itself). We merely require that cr, when executed on el,
perform an accurate translation when it compiles exactly one program’s source code: sp. So Cr
may have defects — but they must not affect compiling sp. Similarly, cr may have triggers and
payloads to create maliciously corrupted executable(s) — but cr must not have triggers for sp, or if
it does, its payloads must not affect the results. Various real-world actions, such spot-checking or
formally verifying the compiler executable cr, can increase confidence that this assumption is true
in the real world. In some cases, a secret compiler (where reading/writing its source,
reading/writing its executable, and using it as a service is expressly limited to very few trusted
people) may be useful as the trusted compiler; via DDC, it can be used to greatly increase

confidence in the publicly-available compiler.

It is worth noting that one of these potential failures is memory failure. Recent field studies have
found that dynamic random access memory (DRAM) error rates are orders of magnitude higher
than previously reported, and memory errors are dominated by hard errors (which corrupt bits in
a repeatable manner) rather than soft errors [Schroeder2009]. The risk of such failures can be
greatly reduced by using memory test programs to check the environment before performing

DDC, and by using memory systems that include error correcting code(s) (ECC).

There is a subtlety in the formal model that is normally handled correctly by compiler users, but
is noted here for completeness. That subtlety is that when performing DDC, we typically need to

have different build instructions (as executed by the “real” compilers and environment) than
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when sp and s were originally compiled. At first glance this appears to be a problem, because in
the formal model of DDC, the source code sp and s, that is used in DDC must be exactly the same
as the source code used in its original purported creation process. Yet the source code may
include build instructions, indeed, nontrivial compilers often include complex build instructions
as part of their source code. But if the build instructions are part of the source code, and the build
instructions invoke a compiler other than cr, how can trusted compiler cr be invoked during
DDC? Similarly, if the environments el or e2 are different than the environments eP and eA
(respectively), and/or if the option flags are different between compilers, how are these changes
modeled? And similarly, if the build systems are substantially different (e.g., there are different
build languages), how can we accurately model translating the build language? One solution is to
consider the build instructions as not included in the source code, but this is grossly unrealistic for

larger compilers with complex build instructions.

A better alternative that completely models these circumstances is to consider the build
instructions to be part of the source code, and also consider the trusted compiler cr to be some
“real” compiler ct’ plus a preprocessor. This preprocessor is trusted to correctly change the build
instructions in a way that meets this assumption, e.g., so that the compilation process invokes ¢’
instead of the original compilation process. In practice, this preprocessor is likely to be
implemented by a human who modifies the build process (e.g., by setting an environment
variable, modifying a makefile, using a different set of arguments when invoking “make”, or
hand-translating the build instructions to a different build language). This step is so “obvious” to
most compiler users that it would not normally be remarked on. Often this transformation is so
simple that it is easy to forget that it even occurred. Nevertheless, by acknowledging this step,

the formal model of DDC can accurately model what actually occurs. Since it is part of the
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trusted compiler cr, this preprocessor step must be trusted to not include triggers and payloads

that would effect the DDC compilation.

In general, the internal structure of trusted compiler cr is irrelevant for the proof. Many problems
in applying DDC (including modeling necessary changes to the build process as noted above) can
be resolved by combining various processes (including preprocessors and/or postprocessors) as
necessary to produce the final trusted compiler cr. The only requirement is that all required

assumptions (including the definitions) are met.

5.6.5 Function compile

Unsurprisingly, we must model compiling a program. We will model compiling as a function that

returns an executable (a kind of data)!3 and has the following parameters:

function compile (Source, Compiler, EnvEffects, RunOn, Target)
This represents compiling Source with the Compiler, running the compiler in environment
RunOn, and instructing the compiler to generate an executable for the target environment Target.

Note that Target may or may not be the same as RunOn.

The parameter “EnvEffects” overcomes an issue in typical mathematical notation. In typical
mathematical notation, a function provided with the same inputs will always produce the same
outputs. Without the “EnvEffects” parameter, this would imply that a given compiler executable,
when given the same Source, RunOn, and Target, will always produce exactly the same output
(i.e., that it is deterministic). Unfortunately, this is not always true for all compilers. Some
compilers will produce different outputs at different times, even when given the same source

code. The reason is that environments can provide “effects”, which are essentially inputs to the

13As noted in section 5.2, the FOL notation used in this paper does not have a built-in mechanism for
notating types such as “data” or “executable”. As explained in section 5.1.1, types are noted to make the
proof easier to understand, even though they are not directly used in the proof’s formal notation.
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compilation process that affect the outcome but are not part of the source code. Examples of
effects that can cause non-determinism are:

* Random number generators. A compiler’s code generator or optimizer might have
multiple alternatives, and instead of picking one deterministically, it might call on a
random number generator to make that determination. If the environment provides
different random numbers each time it is run, the results might be different. Note that
under certain circumstances the GCC compiler will use a random number generator, but
GCC also allows users to select a seed; if a seed is selected, then the sequence is
deterministic and not random at all.

* Heap allocation address values. Many systems today randomize addresses (e.g., of the
heap or stack), in an attempt to counter attackers by making certain kinds of attacks
harder to perform. However, a compiler’s output may be changed by different address
values. For example, some Java compilers use heap allocation addresses for hash
calculation, and then use those hash values to control the sort order of some output. As a
result, the output ordering may be different between executions, even given the same
source code, execution environment, and target environment.

* Execution order due to threading. Some compilers are multi-threaded and are only
loosely ordered. The environment may execute the threads in a different order in

different executions, and depending on the compiler, this may affect the output.

Thus, EnvEffects models the inputs from the environment which may vary between executions

while still conforming to the language definition as used by Source.

As noted earlier, libraries may be modeled by considering them as part of the compiler (if they

are executed) or part of the source (if they are used as input data but not executed).

70



In some discussions of DDC, we will occasionally use the simpler definition:

function compile (Source, Compiler)
Of course, this definition cannot represent the different environments (RunOn and Target), nor
can it represent the possibility that some programs are non-deterministic (which is modeled by
EnvEffects), but in some situations these can be inferred from context. In some cases the

[3P%L)

function name “c” is used as an abbreviation for “compile”.

5.6.6 Assumption sP_compiles_sA

We must assume that the source code sp (written in language IsP) defines a compiler that, if
accurately compiled, would be suitable for compiling s,. To formally state this, we will assert
that if we have some GoodCompilerLangP with the right properties, then using

GoodCompilerLangP on sp will produce a suitable executable:

accurately translates( GoodCompilerLangP, 1lsP, sP,
EnvEffectsMakeP, ExecEnv, TargetEnv) ->
accurately translates(
compile ( sP, GoodCompilerLangP, EnvEffectsMakeP,
ExecEnv, TargetEnv),
1sA, sA, EnvEffectsP, TargetEnv, eArun).

Strictly speaking, the name “sP_compiles sA” is misleading; there is no guarantee that source
code can be directly executed. However, more-accurate names!4 tend to be very long and thus

hard to read.

Note that by combining this assumption (sP_compiles sA) and the previous assumption
cT compiles sP, we can determine a new derived result which we will name

sP_compiles sA result:

accurately translates( compile(sP, cT, EnvEffectsMakeP, el, e2),
1sA, sA, EnvEffectsP, e2, eArun).

14 Such as “sP_when_accurately compiled compiles sA”
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Note that EnvEffectsMakeP and EnvEffectsP are not bound to any particular value, so they have
an implicit “for all” around them. Since their actual values do not matter, to simplify these

expressions they (and similar dummy values) can be replaced with arbitrary capital letters:

accurately translates(compile(sP, cT, A, el, e2), 1lsA, sA, B, e2, eArun).
Note that sp (when compiled) does not need to implement the whole language s was written in, as
defined by some official language standard. Instead, a compiled form of s, only needs to
implement the syntax and semantics of the language that s, requires. This language, IsA, must
include all of the syntactic and semantic requirements necessary to correctly interpret s,; it may,
but need not, include additional requirements not required to interpret s,. This is fundamentally
the same kind of issue as described in section 5.6.4 (with s4, IsA, and the compiled sp analogous

to sp,, ISP, and cr), and the same explanation regarding language applies.

5.6.7 Definition definition_stage1

We must now begin to define the DDC process itself in this formal notation. As shown in figure
4, the executable “stagel” is created by compiling sp using cr, running on environment el and

targeting 