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ABSTRACT 
How do we decide if it is safe to run a given piece of 
software on our machine? Software used to arrive in 
shrink-wrapped packages from known vendors. But in- 
creasingly, software of unknown provenance arrives over 
the internet as applets or agents. Running such soft- 
ware risks serious harm to the hosting machine. Risks 
include serious damage to the system and loss of private 
information. Decisions about hosting such software are 
preferably made with good knowledge of the software 
product itself, and of the software process used to build 
it. We use the term Trusted Software Enganeering to 
describe tools and techniques for constructing safe soft- 
ware artifacts in a manner designed to inspire trust in 
potential hosts. Existing approaches have considered is- 
sues such as schedule, cost and efficiency; we argue that 
the traditionally software engineering issues of config- 
uration management and intellectual property protec- 
tion are also of vital concern. Existing approaches (e.g., 
Java) to this problem have used static type checking, 
run-time environments, formal proofs and/or crypto- 
graphic signatures; we propose the use of trusted hard- 
ware in combination with a key management infras- 
tructure as an additional, complementary technique for 
trusted software engineering, which offers some attrac- 
tive features. 

KEY WORDS 
Safety, security, mobile code, cryptography, analysis, 
verification. 

1 INTRODUCTION 

Installing new software on a machine is risky. Poor qual- 
ity or malicious software can do serious harm. The tra- 
ditional defense has been to install only high-quality 
software products from well-known vendors. 
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This method is not always applicable: companies such 
as AT&T provide world-wide web (WWW) hosting ser- 
vices. Web content (web pages, and associated software 
such as common gateway interface, or CGls) is hosted 
on fast, reliable servers on behalf of other companies or 
individuals. Since CGIs are ordinary applications, they 
can damage the hosting company’s ability to provide 
non-stop service. Thus, hosting companies need ways of 
developing confidence that the CGIs have certain safety 
properties (e.g., they don’t delete files, write to operat- 
ing system tables, use up too much CPU time/Memory, 
etc.). The traditional model also breaks down in the 
context of technologies such as Java[l5, 171, particu- 
larly with applets and mobile code. The simple act of 
browsing a web page can cause software to be installed 
and run on a hosting machine. 

When offered software of unknown provenance to be in- 
stalled and run on a hosting machine, the host’s (%) 
decision would best be based on reliable evidence con- 
cerning: 

1. The software process: how was the software built? 
what were the design, development and testing 
practices used? 

2. The software product What are the properties of 
the software itself? 

We use the term trusted software engineering to describe 
tools and techniques that can be used to construct safe’ 
software that inspires trust in hosts. Engineering con- 
cerns such as cost, efficiency, delay, etc., are of vital im- 
portance; in addition, the vendor ( V )  can be expected 
to be deeply concerned about disclosure of valuable in- 
tellectual property. 

In an earlier paper[ll] we explored techniques for the 
process side of trusted software engineering: the con- 
cern there was to find ways in which V could convince 
(quickly, and at  low cost) a host (3t) that V’s testing 
practices were rigorous, without disclosing too much in- 
formation. In this paper, we turn to the product side 

’We deliberately refrain from defining safety in this paper. 
Different hosts may have different safety policies; for generality, 
our approach remains agnostic on the precise nature of safety. 
However, we discuss specific possible applications. 
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safety --’ 
Environment 

~ _ _ _ _ _ _ _ . ~ _ _ _ _ . . ~ . _ _ _  

- Figure 1: General architecture for mobile code safety , 

of trusted software engineering; how can V convince ‘R 
that a software product has certain desired safety prop- 
erties? 

The outline of this paper is as follows: we begin with 
a description of the design parameters of concern to 
trusted software engineering; we then use these param- 
eters to analyze existing approaches to this problem. 
After describing trusted hardware systems, we explore 
the role they could play in trusted software engineering. 
The paper concludes after a description of implemen- 
tation considerations and possible difficulties with this 
approach. An outline of the ideas discussed in this paper 
were presented earlier in a position paper [lo]. In this 
paper, we describe full details including a key manage- 
ment infrastructure, details of our approaches to dealing 
with resource limitation, and describe an implementa- 
tion for Java [15] bytecode verification. 

2 APPROACHES TO SAFETY 

In this section, we describe some existing approaches to 
safety and trust in software. Figure 1 represents cur- 
rent approaches to  safety. There is a vendor, V ,  who 
produces a piece of code (perhaps mobile code) p.  This 
p gets shipped to a host 31, along with another artifact 
r, which may be claims about properties of p and/or 
proofs of such claims, and/or a cryptographic digest of 
the software. The host 31, upon receipt of p and r, may 
conduct an analysis of p and T ,  to evaluate the claims 
(if any) that V made about p ,  and to determine if p 
can be trusted to run safely on ‘R’s machine. After such 
analysis, ‘R may elect to run p ,  (often) within some run- 
time environment. The safety analysis process, and the 
run-time environment are together represented as an en- 
closing “brick wall” denoted as a safety environment in 
figure 1. 

When considering such approaches, which enable hosts 
31 systematically develop confidence in the safety of sys- 
tem p built by Y (and then run p ) ,  there are several im- 
portant criteria to be considered, from the perspective 
of both V and 31: 

1 .  Cost: how much additional skilled personnel time 

2. Performance: what is the run-time overhead? 

3. Dzsclosure: how much intellectual property disclo- 
sure is involved? 

4.  Configuration Management: when the inevitable 
weaknesses are discovered in the software infras- 
tructure that enforces security and safety, how easy 
is it to distribute upgrades? Likewise, can one 
protect customers using “outdated” client software 
with known security vulnerabilities? 

5. Security: what is the nature of the security guar- 
antee provided? Is it formally proven, informally 
established (perhaps by a social review process) or 
is there no guarantee? (more risky)? 

We will argue that cost, performance, and security con- 
siderations have been of paramount consideration in 
current approaches to this problem; we will further ar- 
gue that the traditionally software engineering concerns 
of configuration management and disclosure are also vi- 
tal. We suggest a complementary approach to address 
these issues. 

It is difficult or impossible to optimize all these crite- 
ria simultaneously. Thus, one way to achieve perfect, 
formal security is to ask the vendor to provide fully an- 
notated source code. 31 then creates a complete proof 
based on the annotated source, then compiles the source 
code, and allows it to run. This gains formal assurance 
at  great cost, while also demanding high disclosure of 
the vendor. Another approach is for 31 could run the 
software on a “sandbox” simulator which analyzes and 
predicts the effect of each step before allowing it to  ex- 
ecute. This approach offers high security, low personnel 
cost and low disclosure but at high run-tim.e cost; also 
this approach requires every 31 (there may be millions) 
to upgrade the simulator if it is found to have a security 
hole. Finally, the trivial approach of letting any pro- 
gram run offers no security, but maximizes everything 
else. The challenge for trusted software engineering is to 
construct a design with a right combination of features 
for a given application. Our goal in this paper is to 
describe a new technique, involving trusted hardware 
and key management, that can lead to better trusted 
software engineering solutions for some applications. 

We describe and evaluate current approaches to estab- 
lishing the safety of software products, two of which 
have their roots in the WWW. These are: Java, 
ActiveX[l, 131 and Proof Carryang Code (PCC)[19]. 
Each approach makes different tradeoff; we now discuss 
them in detail. 
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2.1 JAVA to put them on a formal basis. !Since upgrade decisions 
for the host-side software are made locally, the control 

vulnerabilities. 

Java is a strongly-typed, object-oriented language[15], of the security policy is distribnted. This can lead to 
which in combination with a well defined run-time 
environment[lb] provides a safe environment for host- 
ing mobile code. Java source language programs are 2.2 ACTIVEX 
compiled into Java bytecodes, an equivalent binary rep- 
resentation, which are interpreted by the Java Virtual 
Machine (JVM). WWW Browsers such as NetscapeTM 
include a JVM that can execute Java bytecode programs 
(applets) embedded in web pages; accessing such web 
pages causes the JVM in the browser to execute the 
applets. Applets are downloaded and executed in an 
“almost” transparent manner; safety of applets is thus 
a critical aspect of Java. 

Type safety is a t  the heart of the Java safety model. Be- 
fore running, every Java applet is typechecked statically; 
if a program passes this typecheck, there is a reasonable 
belief (as yet formally unverified, although efforts are 
underway) that there will be no type confusion, i.e., it 
is impossible for a variable to change its type at run- 
time. Avoiding type confusion is critical(for details, see 
[ 171). Java source language programs are type checked 
by the Java compiler prior to being compiled into byte- 
code applets. Since browsers execute applets received 
from untrusted web servers, the associated JVMs have 
to recheck the applets for type safety prior to execut- 
ing them. This fairly complex process, called byte code 
verification, adds to the overhead of executing an ap- 
plet. To allow for this process, Java bytecodes must 
have enough information to allow type checking2. Fur- 
thermore the byte code verification process is embedded 
(via the JVM) in web browsers; when faults or weak- 
nesses are discovered in the bytecode verification pro- 
cess, every web user has to download a new copy of the 
browser. Many of the millions of web users are unlikely 
to upgrade their browsers, thus leaving themselves vul- 
nerable to hostile acts by malicious applets. 

With reference to figure 1: mobile code p consists of 
Java bytecodes. The vendor makes no claims about p ,  
i.e., there is no r-however, the desired property is type 
safety, which is checked by the byte code verifier. The 
safety environment a t  the host’s site consists of the byte 
code verifier and the Java virtual machine, with the as- 
sociated security managers. According to our five crite- 
ria (Section 2 above): the Java model has (1) no addi- 
tional programmer cost; (2) a significant run-time over- 
head for bytecode verification, and for the “sand box’’ 
(3) significant disclosure (the source code of the applet) 
and (4) a substantial upgrade problem. The security 
guarantee (5) provided here is “somewhat” formal; the 
procedures are described in great detail in documents 
subject to rigorous public review; efforts are underway 

’In fact, it has been demonstrated that Java source codes can 
be reconstructed from byte codes. 
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The ActiveX model is similar to Java: application code 
embedded in web pages is downloaded and executed 
when the pages are visited. However, the embedded 
applications are in the form of banaries, which are ex- 
ecuted on the “bare” machine. This lets embedded 
applications from web pages run with the same privi- 
leges as regular applications The ActiveX model calls 
for checking that the embedded application is signed by 
a “known and trusted” party. The security and safety 
of the application is left unspecified. This is potentially 
risky. To quote the Princeton !3afe Internet Program- 
ming group[l3]: 

“ActiveX security relies entirely om human 
judgment. ActiveX prograrns come with digi- 
tal signatures from the author of the program 
and anybody else who chooses to endorse the 
program.” 

With reference to figure 1: mobile code p here is just 
the ActiveX binary; T is the cryptographic signature on 
p by a trusted agent. The safety environment is just the 
checking of the signature R against p.  According to our 
criteria, this, approach (1) involves very little additional 
programmer work (2) involves very little run-time over- 
head, (3) involves no disclosure beyond the binary and 
(4) will probably not need upgmdes, since the signature 
checking software is simple, well-understood and quite 
stable. However, since the approach offers no explicit 
guarantees of security (5) besides the wisdom and good 
intentions of the party which signed the embedded ap- 
plication, it is fraught with risk. There is another impor- 
tant limitation; although there are a considerable num- 
ber of software vendors, few of these vendors may have 
brand name recognition among consumers, and thus en- 
joy broad acceptance in this trust model. However, in 
general, consumers would suffer from being limited to 
using code signed by large, well-known vendors. 

2.3 PROOF CARRYING CODE 

A powerful approach to establishing safety (or other) 
properties of programs is through formal verification. 
Formal verification typically involves 3 steps: first, an- 
notate several program points with invariant assertions 
(typically a t  the start of loops:) that hold when those 
points are exercised. Second, use a verification condi- 
tion generator uses the assertions and the semantics of 
the program to generate a verification condition. Fi-. 
nally, produce a proof (usually by hand) tlhat establishes 
that the verification condition if; true given some initial 
conditions. Usually, the verification condition relates to 



‘\\ 
I__ Vendor Host the desired safety property. Clearly, it would be im- 

practical for a host 31 to formally prove safety for all 
received programs. 

Necula[lS] has proposed an elegant approach to code 
safety using formal verification. His work relies on the 
fact that proof checkzng is much simpler and faster than 
proof creatzon. In his framework, code vendors enhance 

them together with a safety proof. This entire bun- 
dle is a proof carryzng code (PCC). Upon reception, 
the host 31 processes the assertions and the instructions 
in the binary to yield a verification condition. When 
the enclosed proof of the verification condition has been 
checked by 31, the program can be run at binary speeds! 

With reference to figure 1: mobile code U consists of 

T&$f 

binary programs with invariant assertions and package ates 

\ 
- 

the (annotated) binary, and A is the proof. The safety 
environment consists of the verification condition gen- 
erator, and the proof checker. According to our five cri- 
teria: this approach can be expected to involve a large 
amount (1) of programmer time, since proofs must typ- 
ically be created by hand3. Run-time overhead (2) is 
significant: for a (roughly) 1 Kbyte program, the proof 
checking takes about 2 ms for published examples [19]. 
However, in general, proofs could be very long, which 
would result. in increased checking time (and transmis- 
sion time). Finally, depending on the particular proof, a 
lot (3) can be disclosed: the invariant assertions and the 
proof may reveal a lot about the program. For example, 
to establish type-safe pointer generation, the memory 
layout of all data structures must be disclosed. Since 
each host 3c has a copy of the verification condition gen- 
erator and the proof checker, it will be necessary to do a 
large number of upgrades (4) should it be determined to 
be faulty. The greatest strength of this approach (5) is 
that it provides a precise, unforgeable, irrefutable for- 
mal characterization of the safety of the mobile code. 
The host side proof checker is configured locally; so the 
security environment administration is distributed. 

2.4 ANALYSIS 

The approaches discussed in this section all attempt to 
achieve trusted software engineering in different ways. 
Each approach leads to a particular level of cost, per- 
formance, disclosure, release management, and security. 
Each approach also makes a choice in a design space 
whose dimensions are the currently available technical 
options (such as public key cryptography, strong typing, 
run-time checks, and formal proofs and proof checking). 
In this paper, we advocate other technologies for this 
design space: trusted hardware, and configuration man- 
agement by key management. 

3However, Necula is at work on compilers that can generate 
proofs of certain kinds of properties 

Figure 2: An alternate architecture for mobile code 
safety 

3 A COMPLEMENTARY ARCHITECTURE 

We propose the use of trusted hardware (TZ) ,  in con- 
junction with centralized configuration management as 
an additional technique for trusted software engineer- 
ing. In particular, we propose that configuration man- 
agement be handled by the distribution of key creden- 
tials (revocatzons and certzjicates) within a public key 
system. We assume some basic knowledge of cryptogra- 
phy: readers unfamiliar with cryptographic terminology 
are referred to the Appendix(page 10) for details. 

The proposed architecture is shown in Figure 2. There 
are two major changes from Figure 1. First, part of the 
safety environment is moved from the %’s machine to  
the V’s machine; this removal is represented as a “thin- 
ner wall” a t  the host’s machine. At the vendor’s site, 
this piece of 31’s safety environment is ensconced as a 
trusted tool (shown as a “slice of brick wall”) inside a 
trusted hardware device (described below). Software 
(/I) produced by V is processed by the trusted tool, 
resulting in some analysis results (T) .  The software 
and the analysis results together are cryptographically 
signed (a(,u, T ) )  by a key embedded in the trusted hard- 
ware device. 

Now, p,  A and .(/I,.) are shipped to the host 31, 
and used by the (diminished) safety environment on 
X’s  machine. The % can use the signature in lieu of 
certain computations that it would otherwise have to  
perform (details are given below). We also posit (be- 
low the dotted line) a configuration management sys- 
tem, which serves two logical functions: 1) updating 
the trusted software tool that runs at  the vendor’s site 
within the trusted hardware device, and the associated 
private keys, 2) updating certificates for the keys used 
at the host’s site for signature verification. 
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3.1 TRUSTED HARDWARE 

Several manufacturers offer physically secure co- 
-processors in PCMCIA [5, 21 and PCI [3] form factors. 
These devices contain a CPU, volatile and non-volatile 
memory, built-in cryptographic[l8] facilities (symmet- 
ric & public key algorithms, random number genera- 
tion, etc), private keys, and certificates. The programs 
and non-volatile data contained in such T31 devices are 
physically protected: attempts to access or modify them 
will render the device non-functional. Physical security 
is a critical requirement in the intended application of 
such devices (highly security-critical financial and de- 
fense uses) and is regulated by national and interna- 
tional standards [6]. Since these are general purpose 
machines, one can conduct arbitrary computations on 
them, and generate outputs signed with a secret private 
key. This allows for software tools, embedded in 731 
devices, to be run by an untrusted V a manner that 
can inspire trust in a skeptical 31, based on a signature. 
Of course, this trust is subject to cryptanalytic assump- 
tions such as the difficulty of forging signatures, and the 
evolving technology of physical security. 

The crucial observation is that 7-31 devices, in conjunc- 
tion with a centralized, trusted configuration manage- 
ment system, can support trusted, dzstrzbuted enactment 
of software engzneering processes, while offering cost, 
performance, disclosure, upgrade management and se- 
curity advantages. Trusted tools in 73t devices can 
be distributed to  untrusted developers; software created 
(and signed) by this device can be configured and hosted 
as if the tools were run locally. Since computations re- 
lated to security and optimization can be safely per- 
formed remotely, cost and performance benefits can be 
obtained. A simple cryptographic signature can carry 
the weight of a lot of information; so V may not need to 
dzsclose a.s much. Additionally, configuratzon manage- 
ment could be simplified, since there are typically far 
fewer vendors than hosts; from the hosts’ point of view, 
release upgrade is done by key management. 

3.2 SOFTWARE CONFIGURATION USING 
KEY MANAGEMENT TECHNIQUES 

Key management is used in concert with 731 devices 
to a) take defective (or outdated) 7-31 devices out of 
service, b) provide fixes for host-side security software 
with known weaknesses and c) ameliorate the risk of 
compromise of hardware devices. In this section, we 
discuss a) and b); c) is discussed later (Section 6.1). 
In the discussion in the section below, we assume that 
some verification software, whzch would normally be run 
by the host 31, is now running at  the vendor’s site within 
a 7-31 device. For brevity, we also assume a centralized 
simple configuration manager, denoted w .  

We now discuss a), the revocation of faulty versions of 

731 devices. As an example, assume that some code 
C has been successfully verified by a ‘T‘H device with 
tool TI (with private key I<;’), which attests to this 
fact with a signature uK;1 (C, D). 2) describes the ver- 
ification or analysis performed, and other details such 
as the version of the analysis sofitware, and the vendor’s 
id. C , D  and u K - l ( C , D )  are sent to a host 31. The 
public key 1(1 (for Kc’) is introduced to 31 via a cer- 
tificate Cert ,  ( K l )  from the configuration manager W .  

31 (assumed to know I(, already) extracts the key IC1 

from the certificate, checks the signature uK;i (C, D) 
against C,  allows C to run if 2) satisfy the policy for 
executing such code. These cert,ificates do not have to 
be distributed with the code C in it; they could be dis- 
tributed independently, using push technologies such as 
a Marimba [4] channel. 

Now, suppose, that a software bug is discovered in the 
current version of the verifier software. Rather than dis- 
tributing new versions of the software to  every host, the 
w effectively revokes the validity of the current version of 
the verifier software by assuming that hosts authenticate 
software subject to recent-secure authentication policies 
[20]. That is, if the hosts require recent statements con- 
cerning the authenticity of software configurations and 
731, then we can assure bounded delays for fail-safe 
revocation of vulnerable configurations. For such vul- 
nerable configurations, w stops issuing timestamped cer- 
tificates attesting to the validity of verification software 
indicated in 2). Consequently, distributed entities are 
unable to  obtain fresh statements vouching for the va- 
lidity of the verifier software. This has the effect of hosts 
being unable to satisfy their recency policy on checking 
the authenticity of verification software indicated in 2). 
Consequently, the host treats the signed code as sus- 
pect. This general approach for using a trusted-third 
party revocation service and recent-secure authentica- 
tion is first described in [20]. 

The vendor in possession of the 7-31 device is then 
alerted to  obtain a new version T2. In figure 2 the release 
of T2 would be handled by the configuration manager. 
Reconfiguring 7-31 for new software consists of the 7-31 
authenticating a new software upgrade from the config- 
uration manager using a public key of the configuration 
manager stored on the card. Note, this procedure does 
not require encrypted messages. Hence, tlhe vendor has 
some assurance that details concerning testing are not 
leaked. Future signatures prescribe the use of the new 
verification software in 2). 

We now turn to b), fixing old veirsions of host-side soft- 
ware with new 731 devices. Assume as before that TI 
is the current version of the software verifier in a 7-31 
device. Also assume some host-side security software 
H I ,  which is found to have a weakness. The current 

1 
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approach is to require all hosts to download a new ver- 
sion, H z ,  which plugs the security hole. With 731 de- 
vices, another approach is possible in some cases: a new 
(branch) version of the 731, ‘TI 1 is issued, which plugs 
the security hole in H I .  All hosts running H1 are told 
to accept only software processed by 7’1 1 verifiers. This 
is accomplished by revoking and issuing the appropriate 
certificates associated with the current valid version of 
the verification software indicated in P .  

The functionality at  the host side remains identical; this 
reduces or simplifies the host’s side administration. This 
approach both saves time for the hosts and provides ad- 
ditional security by centralizing the configuration man- 
agement of the security infrastructure. However, this 
may not be a perfect solution; plugging the host’s secu- 
rity “hole” may require very strong verification which 
may reduce functionality. 

Other configuration management strategies can be used 
in conjunction with more complex host-side safety re- 
quirements. In combination with a flexible trust policy 
management infrastructure [9], this approach offers a 
high degree of flexibility. In the most general case, one 
can envision a situation where the host 31 specifies a set 
of safety requirements, and describes the configuration 
(version information) of his safety environment. With 
this knowledge, the centralized configuration manage- 
ment system can automatically distribute certificates to 
31; these certificates ensure that the right combination 
of host-side and vendor-side safety environment software 
is in effect, for the specific safety policy required by 31. 

We now discuss the application of our approach to Java 
and PCC. 

3.3 JAVA AND rx 
First, consider Java. The bytecode verifier is ensconced 
in a 731, and made available to Java developers. When 
a developer is finished developing an applet (using con- 
ventional tools on %), she submits the bytecode for the 
applet to 7-77!. The built-in bytecode verifier in the 731 
verifies it, and if the verification is successful, the 7-31 
outputs 1) a signature (T, using a private key KTZ , spe- 
cific to that 731. KTx is extracted from C. A receiving 
browser can believe that the applet’s bytecode has been 
verified (because of U )  by a trusted bytecode verifier. 
There are some complications here; an applet may be 
composed of several distinct class ( . c las s )  or archive 
(.jar) files. Our approach calls for each of these files to 
be verified and signed separately. Our approach to the 
resulting complications are described in Section 5 .  

Now, suppose a flaw is discovered in the bytecode veri- 
fication algorithm, or the implementation in the version 
r installed in 7-31 devices. The configuration manager 
w of the T3t issues a new revision of the software r‘, 

and arranges to upgrade all holders of 7% devices with 
the new software. Simultaneously, w sends out certifi- 
cates, revoking the keys of 731 devices with r versions, 
and issuing new keys for devices ,with r’ versions. Ad- 
ditionally, if a fault is discovered in the Java (host-side) 
run-time environment, which could be fixed by a mod- 
ified byte code verifier, a similar strategy could be un- 
dert aken. 

This approach offers clear improvements for two of the 
five criteria, in the case of Java: upgrades and security. 
There are also performance advantages in some cases. 
First, in the case of Java, there is no additional work 
for the programmer, apart from submitting the byte- 
codes to the 731 for verification. Second, the receiv- 
ing browser doesn’t have to typecheck the bytecodes; 
this could speed the applet, thus improving the user 
experience of the web page. Third, resource limited 
computers with embedded JVMs will not have the re- 
sources to run bytecode verifiers and would benefit from 
our approach. Finally, for the browser user, security 
flaws in the bytecode verifier such as one discovered re- 
cently by the Kimera researchers [21] no longer necessi- 
tate downloading an entire new version of the browser: 
release management becomes a matter of key manage- 
ment! Rather than the vast nuniber of web users up- 
dating their browsers, we can have a far niore manage- 
able number of updates for the applet developers. Fur- 
thermore, by automating the key management on the 
browser side (using push or pull technologies) we can 
make it transparent to the browser users; this wiIl in- 
crease security for users unaware of security flaws. By 
the same token, certain weaknesses in the Java virtual 
machine itself, such as one that, allowed the creation 
of rogue classloaders ( [17], pp 77-82) can be fixed by 
distributing more restrictive versions of the bytecode 
verifier to vendors, and doing the appropriate key man- 
agement on the host side. 

Since Java bytecodes are essentially source code [22], 
applets contain all the informat ion available in source 
code. One defense is to use bytecode obfuscators; our 
approach is compatible this defense. In addition, Java 
bytecode recompilers 1231 (which produce “fat”, multi- 
platform binaries that contain binary code in addition to 
or instead of bytecodes) can also be accommodated. In 
this case, the 7-31 device is provided the original byte- 
codes, the compiled binary, and a “proof” (consisting 
of the sequence of meaning-preserving rewrites used to 
produce the “fat” binary”) that the binary corresponds 
to the bytecodes. The 7-31 device checks the bytecodes 
for type correctness, and then ensures the sequence of 
rewrites provided in the “proof” are known to be mean- 
ing preserving, and that execut’ed correctly, they pro- 
duce the given “fat” binary. The result can then be 
signed as equivalent to statically typechecked Java byte- 
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code. The vendor only need disclose the binary and the 
signature; the Java bytecode can be protected. This ap- 
proach provides both disclosure and performance bene- 
fits; Without bytecode verification or compilation, the 
host can run at  binary speeds. 

3.4 PCC AND 731 

If the code vendor is creating PCC, the 7-31 approach 
offers even greater benefits. In this case, we embed a 
verification condition generator, and a proof checker in 
the 7-31 device. The scenario is as follows: V creates the 
binary, the invariant assertions, and the safety proof, 
and submits the lot (as a PCC) to the 7-31 device at his 
site. The 7-31 analyzes the binary and assertions, regen- 
erates the verification condition, and checks the proof. 
If the proof checks out, the 7-31 outputs a signature sign- 
ing (just) the binary, and the verification condition. V 
now makes a package consisting of the (unannotated) bi- 
nary, the verification condition, and the signature. The 
31, upon receiving this signed package, checks the signa- 
ture against the binary and the verification condition. 
This gives him confidence that a trusted party in the 
731 has checked the proof of the verification condition. 
As long as the verified condition subsumes his safety 
policy, 31 can boldly run the binary. 

This approach offers significant advantages on perfor- 
mance, disclosure, and upgrades. Since the proof is 
checked at  the producer’s site, there is no run-time over- 
head at  the 31’s site. Secondly, the only thing that leaves 
the producer’s site is a signature; the assertions and the 
proof do not have to  be disclosed. Finally, configuration 
management is handled automatically via key manage- 
ment. 

4 Implementation: Trusted, Resource Limited 
Computing 

Price, compatibility, heat dissipation difficulties and 
physical security considerations force extremely tight 
engineering constraints on the design of 731 devices, 
specially in the PCMCIA format. The computing re- 
sources available, particularly memory, on these cards 
is limited. As technology evolves, resources in 7-31 de- 
vices will probably always be several orders of magni- 
tude below what is available on a current conventional 
computer. On the other hand, 7-31 devices are always 
used along with an (untrusted) conventional machine. 
For this reason, it is natural that trusted software engi- 
neering tools not run purely on the 7-31, but as a dis- 
tributed computation involving the hosting computer. 
However, the hosting machine P is under the control 
of an untrusted party, and any supporting computa- 
tions performed by P are subject to tampering. To deal 
with this, we have adopted the following posture. The 
731 uses the P as a potentially unlimited computing 
resource, but always retains a small amount of trusted 

memory to serve as a “digest” of the operations dele- 
gated to P.  This digest is used to check the validity 
of the results returned by P .  If tampering by P is de- 
tected, T31 will simply halt the computation and ter- 
minate. Thus, we place large clata structures such as 
stacks, queues, and tables in P ,  and check operations 
using a small amount of memorly in 731. 
This approach draws upon memory-checking techniques 
developed in the theory community [8]; however, those 
approaches use very strong information theoretic con- 
siderations, which allow the P unlimited computing 
power to mount an attack on 731. In particular P can 
completely simulate 731. Because of these restrictive 
assumptions, their approaches lead to unattractive im- 
plementations. In our case, 7-31 spends at  most a poly- 
nomial amount of time on the size of the input, and 
has access to secrets (keys) unknown to P .  Addition- 
ally, the adversary, P ,  enjoys at  most constant speedup 
factor over 731. Under these conditions, P cannot sim- 
ulate 7-31. More efficient implementations of memory- 
checking protocols are possible, which offer acceptably 
low probabilities of memory compromise. 

A full discussion of this approach and the security of 
the approach is presented in [12]; we have developed 
schemes for handling implementations of stacks, queues, 
and associative arrays implemented as binary trees. For 
brevity, we only present our implementation of stacks. 
In Figure 3, the stack is shown just after the push of an 
item N. There is always a signature of the stack main- 
tained in the 7-31 device. Prior to executing the push, 
the signature U of the stack is in the 731 device; when 
an item N needs to be pushed on1 to the stack, 731 com- 
putes a new signature U’ as shown in the figure. Then 
the new item N and the old signature U are given to 
the P stack implementation, with a request to execute 
a push. The signature r’ is retained in the 7-31 device’s 
memory as defense against tampiering by P .  Thus, when 
a pop command is issued, P is expected return the top 
item N,  and signature of the rest of stack, U .  Then the 
original signature U‘ is recomputed as shown in the fig- 
ure and checked against the value stored in 7-31. It is 
infeasible for P to spoof 731 by forging the values of N 
or U so long as 7-31 retains U’. Thus the stack invariants 
are preserved. The approach described here uses only a 
constant number of bits in the 7% device, irrespective of 
the size of the stack; existing methods use a logarithmic 
number of bits, which is exactly the information theo- 
retic bound [SI. For our application, with limited adver- 
saries, this is adequate. If informiation-theoretic security 
are desired, our security could be increased by using a 
counter in the 7-31 device, and inserting signed counts 
into the stack. Our implementation is also simpler; each 
stack operation executes in constant time, whereas [SI 
requires O(log(stack - s i ze ) )  operations (amortized) for 
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S= signature (stack) 

Stack 
B o t t o m ’  ” ” ‘ I  ” I ’  I I‘ 

0’ = signature(append(0 ,N ) ) 

Figure 3: A resource-limited, “secure” implementation 
of stacks 

each stack push and pop. 

5 IMPLEMENTATION: JAVA BYTECODE 
CERTIFICATION 

To demonstrate our approach, we are implementing a 
Java byte code verifier suitable for embedding in a 7% 
device. Our approach has necessitated a redesign of the 
Java bytecode verifier. A preliminary implementation 
of our bytecode verifier can be tested by email (send 
a “help” message to genserverQresearch. att . com). 
Upon receipt of Java byte codes, it will verify it,  and 
send the results back by email. This version is under 
continuous refinement. Our approach of verifying and 
signing each class file separately creates some special im- 
plementation issues, which we now discuss. Recall that 
in Java, each class file contains the implementation of 
one Java class. 

The verification process, as described in [16] comprises 
several passes. The first 2 passes ensure that the class 
file is laid out correctly. The magic number, symbol ta- 
ble entries, instruction sizes and arguments etc. are all 
checked. All branch statements are examined for tar- 
get validity. The third pass actually does typechecking. 
Since bytecodes are not structured programs, this in- 
volves control- and data-flow analysis. The final phase 
includes checks on subroutine invocations and is con- 
ducted at run-time. Currently, the bytecode verification 
process is tightly integrated with the JVM; verification 
is interleaved with loading, linking and execution. This 
is necessary: in general, the typesafety of a Java class 
file can only be established within a global linking con- 
text. The typesafety of a statement like a = b within a 
class file (where a and b are instances of other, different 
classes) can be established only by loading the corre- 
sponding class files. Our approach calls for each class 
file to be verified and signed separately. Therefore we 
cannot process a class file per se and certify it typesafe 

with a signature. From each class file C, we create a list 
of obligations, and commztments. The obligations list 
the compatibility relationships that must hold between 
other classes referred to by C ;  commitments list the re- 
lationships between the C class and other classes that 
are guaranteed by the bytecodes in C. We then sign C 
together with the commitments and obligations induced 
by C; the signature certifies both that C has been veri- 
fied, and the correctness of the linking information. Full 
details are omitted due to space constraints, and can be 
found in [14]. A suitably modified JVM can make use 
of this signed information, avoid verification, and speed 
up the linking process. This part of the work is still 
ongoing. 

As in [21], we have adopted a “cleanroom” approach to 
our implementation of the verifier. There is no available 
formal description of the bytecode verifier; so we have 
tried to align our implementation closely with the de- 
scription given in the JVM book [16]. For each part of 
the JVM description, there is an allied, clearly identities 
portion of the source code in our implementation. As in 
the clean room approach, we use statistical testing, with 
millions of test cases generated by random mutations of 
legal applets [all. Testing is underway; after compre- 
hensive testing, embedding in a suitable 7‘31 device will 
be undertaken. 

6 ANALYSIS AND CONCLUSION 

In this section, we discuss the problem of physical se- 
curity compromise, and other approaches to the prob- 
lem of trusted tools. We also explore the criteria under 
which this approach is applicable. We conclude with a 
brief discussion of our future plans. 

6.1 HARDWARE COMPROMISE 

The security of physical devices and the technology to 
circumvent protection mechanisms is continually evolv- 
ing. 731 devices have been compromised [7]. PCMCIA 
cards and PCI cards (which contain batteries, and can 
erase secret memory when intrusion is detected) are less 
vulnerable to attack than smart cards. However, as time 
evolves, devices once thought secure may become vul- 
nerable. Our goal is to develop an integrated framework 
that a) allows reasonable recovery from compromise. b) 
discourages attempts to tamper and c) combines phys- 
ical integrity of the 731 devices with vendor’s identity 
as a basis for trust. 

Recovering from Comprom’ise If a particular 731 
is suspected to be compromised, of if tampering is sus- 
pected (see following section) its key can be revoked. 
Also, if the compromise p e r  se is undetected, but an 
unsafe program is discovered to have been signed by a 
particular 77-1 device, the key for that device can be 
revoked. 
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Discouraging Tampering In general, it is more dif- 
ficult to physically compromise a 7% device while it 
is in operation. To this end, we advocate that a V be 
required to install his 7% device permanently in a net- 
worked machine. After installation ( until the 7% de- 
vice is taken out of service) it will be challenged with 
the current time at  random intervals by an authenti- 
cated server. It shall respond with its signature (using 
its private key) on the challenge data. The mean period- 
icity can be adjusted to discourage attempts to remove 
the 731 device and penetrate it off-line. This is a kind 
of periodic inspection (similar to ones used in arms con- 
trol surveillance regimens [7]) by electronic means. If 
challenges are unanswered, the key associated with that 
731 device could be revoked via the configuration man- 
ager (Figure a ) ,  and the vendor V may be required to 
produce the 7% for inspection. 

Involving the Vendor To tightly “bind” the vendor V 
with a specific 7% device, the software in the 731 device 
could include information about the vendor’s identity. 
Verified software is packaged along with the vendor’s 
identity and signed with the 731 device’s key. The sig- 
nature establishes that V owns the 7% device, and is 
responsible for its integrity. If V loses the device, or 
it ceases to  function, he is responsible for notifying the 
configuration manager (See figure a) ,  which can revoke 
the device key. If software signed by a certain device 731 
is known to be unsafe, this ownership signature provides 
evidence of ownership of the device. The owner of the 
device can be called upon to make the device available 
for inspection. 

Upon receipt of this signature, the host 31 only has to 
decide whether she trusts‘that V can be relied upon to 
not compromise the device 7%. Notice that the role of 
V’s identity is quite circumscribed (as compared to Ac- 
tiveX) in this usage: here, it only means that V owns, 
and takes responsibility for the integrity of a particular 
7% device. The problem here is that known vendors 
enjoy an advantage; (though perhaps not as significant 
as with ActiveX) they are under less suspicion of tam- 
pering. 

6.2 OTHER APPROACHES TO TRUSTED 
TOOLS 

An alternative approach to trusted hardware is multi- 
party computation. The idea here is that several mis- 
trusting entities can run the analysis/verification and 
certify the results. This approach fits tightly into the 
framework we proposed with an important exception: 
the code is disclosed to the verification entities. In the 
case of byte code verification in Java, this is not a prob- 
lem, since bytecodes are source code [22]. 

The configuration management technique illustrated in 
figure 2 would be fully applicable. Keys for old buggy 

versions of verifiers could be revoked. Likewise, weak- 
nesses in in legacy versions of the browsers could be 
“plugged” by deploying stricter bytecode verifiers, and 
doing the appropriate key management. 

6.3 APPLICABILITY 

7% devices can offer advantages for performance, con- 
figuration management, and disclosure. Performance 
advantages are obtained by “pre-computing” informa- 
tion in a trusted manner a t  the vendor’s site. Configu- 
ration management advantages may also obtain. How- 
ever, the unique advantage of 731 devices is most vivid 
in the case where disclosure is a vital concern. The 
vendor’s private information (needed for verification) is 
kept a t  the vendor’s site; the only information leaving 
the site is a signature. 

6.4 CONCLUSION 

We have discussed some novel techniques for trusted 
software engineering: trusted tools in trusted hard- 
ware, and configuration management by key manage- 
ment. We described our progress on implementation 
work. It is important to emphasize that trusted hard- 
ware and key management are only tools in the arsenal 
for trusted software engineering. The proper deploy- 
ment of the arsenal must be tailored to suit the needs 
of the particular application. 

REFERENCES 

ActiueX Consortium. http: /www . act ivex. org. 
Chrysalis, Inc. http:/www.chrysalis-its, com. 

IBM PCI Secure CO-processor. 
.com/Security/cryptocards. 

Maramba Inc. http: /www.marimba.com: 

Spyrus Product Guide, Spyrus, Inc. (See also: 
http://www.spyrus.com). 

Fipsl40-1 security requirements for cryptographic 
modules. Technical report, 
NIST, 1994. http: //csrc . ncsl . nist . gov/f ips- 
/f ipsl401. htm. 

R. Anderson and M. Kuhn. Tamper resistance - a 
cautionary note. In Second Usenix Electronic Com- 
merce Workshop. USENIX Association, November 
1996. 

M. Blum, W. Evans, P. Gemmell, S. Kannan, and 
M. Noar. Checking the correctness of memories. Al- 
gorithmica, 12(2/3):225-244, 1994. Originally ap- 
peared in FOCS 91. 

Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, 

http : /www . ibm- 

and M. Strauss. Referee: Trust management for 

134 

http:/www.chrysalis-its
http://www.spyrus.com


web applications. In Proceedzngs of the Sixth Inter- 
national World- Wide Web Conference, pages 227- 
238, 1997. 

[lo] P. Devanbu and S. Stubblebine. Automated soft- 
ware verification with trusted hardware. In Twelfth 
Internatzonal Conference on Automated Software 
Engzneerzng, November 1997. 

[ll] P. Devanbu and S. G. Stubblebine. Cryptographic 
verification of test coverage claims. In Proceed- 
ings of The Fifth ACM/SlGSOFT Symposium on 
the foundatzons of software engzneering, Zurich, 
Switzerland, September 1997. 

[la] P. Devanbu and S. G. Stubblebine. Stack and queue 
integrity on hostile platforms. In Proceedzngs of 
IEEE Symposium on Security and Przvacy, Oak- 
land, California, May 1998. 

[13] E. Felten. Princeton safe internet program- 
ming java/activex faq, 1997. h t t p :  / /www. CS- 
.Princeton.EDU/sip/java-vs-activex.htm1. 

[14] P. W. Fong. Modular verification of dynamically- 
loaded mobile code. Workzng Paper, August 97. 

[15] J. Gosling, B. Joy, and G. Steele. The JavaT” 
language specificatzon. Addison Wesley, Reading, 
Mass., USA, 1996. 

[16] T. Lindholm and F. Yellin. The JavaTM Vzrtual 
Machzne specificatzon. Addison Wesley, Reading, 
Mass., USA, 1996. 

[17] G. McGraw and E. Felten. Java Securzty: Hostzle 
Applets, Holes & Antidotes. John Wiley & Sons, 
1997. 

[18] A. J .  Menezes, P. C. van Oorschot, and S. A. Van- 
stone. Handbook of Applied Cryptography. CRC 
Press, 1996. 

[19] G. Necula. Proof-carrying code. In Proceedzngs of 
POPL 97. ACM SIGPLAN, 1997. 

[20] S. G. Stubblebine. Recent-secure authentication: 
Enforcing revocation in distributed systems. In 
1EEE Computer Society Symposzum on Security 
and Privacy, Oakland, California, May 1995. 

[2l] The Kimera Project. h t t p :  //kimera. cs .wash- 
ington.  edu. 

[22] H.-P. V. Vliet. Mocha java bytecode decom- 
piler, 1996. h t t p :  //web. i n t e r . n l  .net/users- 
/H.P.van.Vliet/mocha.htm. 

[23] F. Yellin. The java native code api h t tp : / / j ava . -  
sun. com/docs/jitinterfaGe.html, 1996. 

Appendix-Terminology Some terminology is 
presented here for convenience. We assume asymmet- 
ric (public-key) cryptography with public/private key 
pairs: e.g., IC;‘ is a private key for the individual P 
and ICp is the corresponding public key. 

Signatures Given a datum 6, v K - 1 ( 6 )  is a value rep- 
resenting the signature of 6 by P ,  which can be verified 
using K.p. Note that r K - 1 ( 6 )  is usually just an en- 
crypted hash value of 6. It is infeasible for P to find 
S+ # S such that ( T ~ , I  (S+)  = u,yp~ (6). It is also infea- 
sible to produce the signature ( ~ ~ - 1  (6) from 6 (verifiable 
against 6 and IC?) without knowledge of IC.,’. We ad- 
vocate the use of such signatures by trusted agents to 
attest proven properties of software. 

Certificates Given a public key IC, for an individ- 
ual T ,  and a certifying agent U with public key ICul 
the signature nK;1 ((KT, T ) )  is Laken as a (feasibly) un- 
forgeable assertion by w that IC,. is the public key of T .  

This is called a certificate, denoted here by Cert,(K,) 
and is used in security infrastructures m an introduc- 
tion of T by w to anyone who knows If,. A trusted 
certificate authority with well-known public key can 
be used as a repository of keys and a source of intro- 
ductions. By composing certificattes, chains of introduc- 
tions are possible. A similar mechanism can be used for 
a key revocation, which is just a signed message from an 
authority indicating that a public key is no longer valid. 
We use certificates and revocations to introduce and re- 
voke trusted software verifiers. In general, a certificate 
is a kind of credential from an authority. Thus, an au- 
thority w may generate a credential signed with I+;’ 
for a trustworthy software tool T of the form “IC, is the 
private key for r; I also believe ithat software signed by 
r can be trusted to not delete files not in /tmp”. With 
this credential, an agent 31 can verify software signed 
by r and then perhaps allow the software to run, writes 
to /tmp are acceptable. 

Key Management Given a set of certificate author- 
ities, and a set of other participants, it is possible to 
set up a policy by which keys are introduced and re- 
voked by certificates. We advocate use of such policies 
for configuration management. 

P 
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