
Reproducible Builds in FreeBSD

Ed Maste
The FreeBSD Foundation / The Linux Foundation

Email: emaste@freebsd.org

February 3, 2017

Abstract
The goal of a reproducible build is to allow anyone
to build an identical copy of a software package from
given source code, to verify that no flaws have been
introduced in the compilation process. This paper
presents an introduction to reproducible builds, explains
why build reproducibility is desirable, reports on the
current state of build reproducibility in FreeBSD, and
examines some of the techniques used to obtain repro-
ducible builds.

1 Introduction
From the Reproducible Builds definition[1],

Reproducible Builds are a set of software de-
velopment practices that provide a verifiable
path from human-readable source code to bi-
nary code executed by a computer.

A build is reproducible if given the same
source code, build environment and build in-
structions, any party can recreate bit-by-bit
identical copies of all specified artifacts.

Developers of many projects, including FreeBSD,
have been working for several years on making their
builds reproducible. There are different motivations
for doing so. Reproducible builds provide security and
software assurance benefits including the detection of
malfeasance, support the goals of the Free Software
community, and provide operational and efficiency de-
velopmental benefits unrelated to security.

1.1 Security and Software Integrity
One benefit of Free and Open Source software is that
the source code is publicly available for audit and re-

view. If we assume that such review occurs, and that
the tools used to build the software are trustworthy, then
users who compile their own binaries from that source
code can be confident those binaries are in turn trust-
worthy.

Most users of open source software do so by us-
ing precompiled binaries. Knowing that the source for
those binaries was audited provides no guarantees about
those binaries: it’s possible that a malicious developer,
package build infrastructure system administrator, ex-
ternal adversary, or compromised toolchain could intro-
duce an undesired change in the binary package. With
a reproducible build anyone can rebuild the binary from
the audited source, ensuring that it indeed corresponds
to that source.

Mike Perry and Seth Schoen’s talk Reproducible
Builds: Moving Beyond Single Points of Failure for
Software Distribution[2] at the 31st Chaos Communi-
cation Congress (31C3) represents an inflection point
in growing interest around reproducible builds from the
perspective of software security and assurance. Perry
and Schoen focused on the Tor Browser Bundle, and
demonstrated the introduction of a vulnerability via a
single-bit change in the binary. Research and reports
have shown how malicious code introduced into devel-
oper environments can compromise source code during
the build process, without leaving evidence in any on-
disk file.

Malware may be introduced in compiled binaries
via a compromised tool chain. A recent example is
XCodeGhost, a modified version of Apple’s proprietary
XCode development environment, that inserts malware
into compiled applications[3]. Although XCode is
available for download from Apple at no cost, the in-
staller is nearly 3GB in size and some developers chose
to obtain a copy from a non-official local source. Many
of these mirrors contained a version of XCode that had

been modified to automatically link a malicious pay-
load.

Ken Thompson’s seminal paper Reflections on Trust-
ing Trust[4] demonstrated a compiler backdoor which,
in brief, functions as follows:

1. The compiler is modified to insert a backdoor
when compiling a specific, targeted application
(for example, login).

2. The compiler is modified to determine when it is
compiling itself, and insert the code to backdoor
the targeted application.

3. The compiler is recompiled.

4. The code to insert the backdoors is removed.

5. The compiler is recompiled.

At the conclusion of this process the compiler will insert
a backdoor when compiling the targeted application and
when compiling itself, even though the source no longer
exists for either backdoor.

David A. Wheeler’s PhD dissertation[5] presents a
solution to the Thompson attack, known as Diverse
Double-Compiling (DDC). DDC requires that the (pos-
sibly backdoored) compiler under test builds repro-
ducibly, and that the compiler can build itself. Verifi-
cation proceeds as follows:

1. Build the compiler under test with itself.

2. Build the compiler under test with a trusted com-
piler.

3. Build the compiler under test with the result of step
2.

In the absence of compiler backdoors, the binary pro-
duced in step 1 and step 3 will be identical.

1.2 Operational Efficiency
In the FreeBSD base system the needs of the
freebsd-update utility drove the initial effort on
build reproducibility, rather than direct security and
software assurance concerns. The freebsd-update
tool is used to keep a FreeBSD installation up-to-date,
with the primary use case being the application of fixes
for security advisories (SAs) and errata notices (ENs).
In operation, freebsd-update compares crypto-
graphic hashes of installed files with those expected in

the specified release, and fetches and installs those files
that don’t match the expected hash. In order for this
mechanism to operate efficiently we require that bina-
ries built from source files unchanged by the SA or EN
are themselves unchanged, and thus not included in the
update. In addition, binary differences in files that are
changed will be minimized.

Reproducible builds can facilitate reductions in pack-
age mirror traffic and storage requirements. For exam-
ple, a system may periodically build FreeBSD packages
against the development Subversion ports and base sys-
tem trees. Reproducible builds provide the same benefit
here as for the base system, avoiding the creation of new
package binaries when the subset of source files related
to that package are unchanged.

In FreeBSD an exp-run is an experimental build of
the entire ports tree, with some change applied. In the
absense of a reproducible build, we can verify that ports
still build with the change, and that some subset of ports
pass their included test suites. If we have a ports tree
that builds reproducibly, we can additionally determine
the impact of changing toolchain components, header
and macro changes, and identify packages using static
libraries.

2 Reproducible Builds

Around 2014 Jérémy “Lunar” Bobbio and Hol-
ger Levsen, along with other members of the De-
bian project, began a holistic effort on Reproducible
Builds, working towards a completely reproducible
Debian release. They created the https://www.
reproducible-builds.org web site to collect
documentation and host a mailing list for the project.
With sponsorship from the Linux Foundation’s Core
Infrastructure Initiative (CII) the Reproducible Builds
project has been able to hire several developers to fo-
cus on reproducible builds on a full-time or part-time
basis, and has hosted two summits to bring together de-
velopers from diverse projects with a common interest
in reproducible builds.

Projects now working on reproducible builds include
Debian, FreeBSD, NetBSD, OpenWRT, Fedora, Arch
Linux, Coreboot, F-Droid, Bitcoin, Tor, Signal, Open-
SUSE, Ubuntu, Guix, NixOS, ElectroBSD, Qubes,
TAILS, Subgraph, and many others.

2

https://www.reproducible-builds.org
https://www.reproducible-builds.org

2.1 Components of a Reproducible Build

Reproducible builds require a deterministic build sys-
tem, a reproducible build environment, and a way to
distribute the build environment. Then, in order to pro-
vide value in software assurance some process is re-
quired for for regularly rebuilding software packages
and checking the results.

A deterministic build system implies that inputs and
outputs are stable. The input to the build (that is, the
source code and other files) is known and unchang-
ing. The output depends only on the input and a set of
known, controlled external factors such as the version
of the tool chain used to build the software.

2.2 Sources of Non-Reproducibility

There are many reasons software may not build re-
producibly. Example sources of nonreproducibility in-
clude:

• Embedding build information into the binary (such
as the current date and time)

• Input file ordering (filesystem or locale related)

• archive metadata

• unstable output ordering (for example, from hash-
based data structures)

• intentional randomness introduced into a build

• DWARF debug info paths

• races / nondeterminism in threaded tools

• optimizations

• value initialization

• embedded signatures

3 Addressing Nonreproducibility

The reproducible builds team identified several com-
mon sources of nonreproducibility while iterating on
reproducible build efforts. Template solutions for ad-
dressing these issues are presented here.

3.1 Stable order for inputs

Inputs to a build should be processed in the same order.
Directory ordering is not necessarily stable, depending
on the filesystem in use. For example, this command
will not necessarily produce a reproducible output:
%tar -cf archive.tar src
This can be addressed by listing inputs explicitly:
%tar -cf archive.tar src/util.c

src/helper.c src/main.c
Or by explicitly sorting, with an explicit locale:
%find src -print0 LC_ALL=C sort -z

| tar -null -T - -no-recursion -cf
archive.tar

3.2 Deterministic version information

Version numbers should not be generated on each build.
Instead, version information should be derived from the
source - for example, a Version Control System revi-
sion number commit hash, a hash of the source code, or
extracted from a changelog entry.

For example, FreeBSD’s newvers.sh script ob-
tains Subversion, Git, or Mercurial (Hg) version infor-
mation and uses that as the build’s unique identifier:

svn=‘cd ${SYSDIR} && $svnversion 2>/dev/null‘
...
#define VERSTR "...${svn}${git}${hg}..."

3.3 Eliminate build information

Many software packages encode build timestamps and
other information for use in version or information
strings. For example,
Compiled by emaste on 2 May 2016 at

14:12:03
Information such as the build date and time, user

name, path, and hostname can simply be omitted. If the
build is reproducible this information does not matter.

3.4 Don’t record the current date and
time

Timestamps should generally be avoided, but if one is
required, or if upstream developers are not willing to
entertain removing them, a suitable timestamp should
be chosen and used in the build. This could be the date
of the last commit in a version control system, extracted
from a changelog, or simply hardcoded to an arbitrary

3

value. This timestamp can be passed to the build using
the SOURCE_DATE_EPOCH environment variable.

The date and time is often recorded in archive
files. This is commonly observed in static library .ar
archives. Many archiving tools provide a command-
line option to produce deterministic output, recording
dummy values in place of timestamps:
ar -crD lib.a obj1.o obj2.o
If the archiver does not support such an option

touch can be used to set a timestamp:
touch -d "2015-08-13 00:00Z" build/*

3.5 Explicitly set environment variables
Some environment variables can affect build output, for
example:

• LC_CTIME (time strings)

• LC_CTYPE (text encoding)

• TZ (timezone)

Explicitly set these to a controlled value. However, up-
stream software projects should not override LANG; the
user (or distribution software packager) should be able
to build their software for a given language, and the
resulting packages are intentionally not reproducible
across different languages.

3.6 Stable order for outputs
Build tools may use hash tables to store items, and iter-
ate over those items in some non-determistic order. One
common case is found in scripting languages which in-
tentionally introduce randomness into hashes, as a de-
fense against algorithmic complexity attacks. This may
be addressed by explicitly sorting the hash keys and it-
erating over that sorted list.

3.7 Avoid true randomness
Randomness may appear in a build from several
sources:

• Temporary file names

• Generated UUIDs

• Filesystem images

• Protection against complexity attacks

• Link-Time Optimization (LTO) symbol names

• Unique stamps in coverage data files

• Compiler pseudorandom number generator
(PRNG) use

These cases can be resolved by ensuring the ran-
dom data does not appear in output artifacts (for exam-
ple, by storing using only contents of temporary files,
never their filenames), or by avoiding the use of ran-
dom data altogether (for example, by deferring UUID
generation).

Compilers may accept a seed value for PRNG initial-
ization, which may be seeded with a fixed value, ex-
tracted from source code (a filename or content hash)
or provided by make.
gcc -flto -frandom-seed=$seed

3.8 Avoid volatile inputs
Build inputs fetched from the network might change or
disappear at any time. Either avoid relying on exter-
nal resources (for instance, by committing a copy to the
local source repository), or verify the content using a
cryptographic checksum.

3.9 Controlled value initialization
Build tools may create binary structures or buffers in
memory, and later write them to disk. Some tools
have failed to fully initialize these, resulting in arbi-
trary data from the heap or stack written to the out-
put file. Compiler-generated padding inserted between
struct members is one potential source of such uninitial-
ized data. All of these cases are simply bugs in these
build tools that need to be fixed by fully initializing
structures and buffers.

4 Tooling
The Debian-initiated Reproducible Builds project pro-
duced tools and specifications aimed at making builds
reproducible, as well as tools for determining how non-
reproducible builds differ, and tracking the progress to-
ward a reproducibly-built package repository.

4.1 SOURCE_DATE_EPOCH
Build systems may make use of the notion of the cur-
rent time (“now”). For example, the the C/C++ macros

4

__DATE__ and __TIME__ can embed a build times-
tamp into the binary.

The SOURCE_DATE_EPOCH specification[6] pro-
vides a standard way for build systems to provide a con-
trol timestamp, to be used instead of the current time. A
UNIX timestamp (seconds since the epoch) is exported
as an environment variable SOURCE_DATE_EPOCH,
and build processes use it instead of the current time.

The specification claims that the value “SHOULD”
be set to the last modification time of the source, incor-
porating any packaging-specific modifications.

4.2 disorderfs
disorderfs is a FUSE filesystem that introduces inten-
tional nondeterminism into filesystem metadata (for ex-
ample, returning directory entries in a random order).
This can be used to identify cases where directory or-
dering unintentionally affects the build output.

4.3 strip-nondeterminism
For cases where it isn’t feasible to modify a build tool to
produce reproducible output the Debian project created
strip-nondeterminism. It nomralizes files (gzipped files,
ZIP archives, etc.), replacing nonreproducible fields
with static values.

4.4 Diffoscope
For examining the differences between two expected-
identical builds the Debian team built the Diffoscope
tool. Diffoscope examines differences in depth, recur-
sively unpacking archives and other container formats.
It produces an HTML or plain text report containing
human readable content – for example, it uncompresses
and converts to text PDF files, and disassembles bina-
ries.

Diffoscope is available in the FreeBSD ports tree
as sysutils/diffoscope and can be installed as a binary
package via pkg install py35-diffoscope.
Debian also maintains an online diffoscope instance at
https://try.diffoscope.org.

4.5 tests.reproducbile-builds.org
https://tests.reproducible-builds.
org is a Jenkins Continuous Integration instance
which builds packages or binaries for Debian,
FreeBSD, NetBSD, and other projects. Each package

is built twice, varying many aspects of the environ-
ment between builds, and the resulting packages are
compared to determine how much of the project builds
reproducibly.

Variations include the hostname and domainname,
the TZ LANG LC_ALL and USER environment vari-
ables, the build timestamp (year, date, time), the uid
and gid, the kernel version, 32- and 64-bit kernels, the
shell, umask, CPU type, and filesystem.

5 Reproducible FreeBSD
Reproducible build efforts in FreeBSD started several
years ago on a somewhat ad-hoc basis, but over the last
two years build reproducibility has become a topic of
increasing interest.

In FreeBSD we have two areas of focus for repro-
ducibility efforts: the base system, and the ports col-
lection. The FreeBSD base system is entirely under
our control and we therefore have significant freedom
to make changes.

The Ports collection consists of over 26,000 individ-
ual third-party software programs, requiring effort in
the FreeBSD repository as well as coordination with up-
stream authors.

5.1 Base System
The FreeBSD ReproducibleBuilds wiki page was cre-
ated in 2013, representing the beginning of a con-
certed effort addressing base system nonreproducibil-
ity. As of January 2017 all known reproducibil-
ity issues in the base system have been resolved.
However, some changes are enabled only when the
WITH_REPRODUCIBLE_BUILD compile-time set-
ting is enabled.

Many utilities, configuration files and documentation
were previously changed in order to build reproducibly
for freebsd-update. Some examples of removing
build information for reproducibility include:

• Build date in /usr/include/osreldate.h

• Build host and user in /usr/sbin/amd

• Build date and time in /usr/sbin/bhyve

• Build date and time in /etc/mail/*.cf

• Build date in /usr/share/doc/
psd/13.rcs/paper.ascii.gz

5

https://try.diffoscope.org
https://tests.reproducible-builds.org
https://tests.reproducible-builds.org

• Build host, user, path and time in
/var/db/mergemaster.mtree

By default the boot loaders and kernel contain some
combination of the build user and hostname and the date
and time. From the loader:

BTX loader 1.00 BTX version is 1.02
Consoles: internal video/keyboard
BIOS drive C: is disk0
BIOS 638kB/1046464KB available memory

FreeBSD/i386 bootstrap loader, Revision 1.1
(root@logan.cse.buffalo.edu

Thu Jan 1 09:55:10 UTC 2009)
Loading /boot/defaults/loader.conf

And kernel:

% uname -v
FreeBSD 9.1-RELEASE #0 r243825:

Tue Dec 4 09:23:10 UTC 2012
root at farrell.cse.buffalo.edu:

/usr/obj/usr/src/sys/GENERIC

/etc/src.conf now supports a
WITH_REPRODUCIBLE_BUILD compile-time
option to disable this additional metadata, making the
loader and kernel build reproducibly.

An interesting example of nonreproducibility was
found in the mandoc.db manpage database, produced
by makewhatis. When generating the database
makewhatis used each page’s inode number as a
hash key, to detect hard linked pages and only index
them once. It processed and output the pages ordered
by hash key, resulting in non- deterministic output even
on filesystems that return directory entries in sorted or-
der.

The solution to this problem was suggested by Dag-
Erling Smørgrav at the FreeBSD developers’ summit
during FOSDEM 2016:

1. Provide fts_open() with a comparison func-
tion to process directories and files in a determin-
istic order

2. In addition to the existing hash, insert pages into a
linked list which will be sorted (by virtue of 1)

3. Iterate over pages by the list in 2, instead of hash
order

This approach was implemented in the FreeBSD repos-
itory as r307003, and incorporated into the upstream
mandoc repository.

5.2 Ports

The reproducible builds effort in the ports tree started
somewhat later; the PortsReproducibleBuilds wiki page
was created in March 2015. Steve Wills posted an ini-
tial patch (in FreeBSD code review D2032) that sets
timestamps on files in the stage directory to that of the
newest distfile. This addressed many sources of non-
reproducibility in the package archive metadata (under
the FreeBSD project’s control), without addressing re-
producibility of the archive content.

A test build that varied the hostname, time, and date
was run at that time. Those results are found in the
D2032 column of Table 1. 64% of the packages built
reproducibility. Only those ports that used a timestamp-
preserving method for fetching distfiles had the pos-
sibly of reproducibly building packages with this ap-
proach.

A second iteration by Baptiste Daroussin recorded
the timestamp in the make makesum command used
during a port update, and used this to set the timestamps
in the package archive file. We observed that of the
ports that built, 79% built reproducibly (the pkg column
in Table 1 and Figure 1).

The next attempt set SOURCE_DATE_EPOCH in
the build environment, using the same port-update
timestamp. This made use of any existing repro-
ducible build support in individual ports, as well as
the GNU Compiler Collection (GCC’s) support of
SOURCE_DATE_EPOCH for setting the __DATE__
and __TIME__ macros. This is the +build env column
in Table 1. With this change 2499 additional ports built
reproducibly, bringing the total to 80%. (Note that only
those ports that previously built, but not reproducibly,
were retested.)

A patch adding support for
SOURCE_DATE_EPOCH to the Clang compiler
was proposed in LLVM review D20791, and applied to
the base system Clang. This increased the fraction of
reproducible packages to 82%.

6 Next Steps

We have several tasks remaining in the FreeBSD repro-
ducible builds effort. In the base system we need to en-
able reproducible build options by default in the release
process, and ensure that continuous integration testing
is in place to avoid regressions in reproducibility.

In ports we have a few more systemic changes to

6

https://svnweb.freebsd.org/changeset/base/307003
https://reviews.freebsd.org/D2032
http://reviews.llvm.org/D20791

make to allow a baseline of reproducibility. The work
in progress patches used in the reproducibility investi-
gation must be committed to the ports tree, and the tool
chain patches need to be pushed upstream. This will al-
low us to reproducibly build over 80% of the package
collection. Following Debian’s example this will be fol-
lowed by a long tail of addressing nonreproducibility in
individual ports.

We need to develop reproducibility test rebuild in-
frastructure. This will rebuild the package collection
and report results which can be compared with the ex-
pected or initial build.

Finally we need to introduce tooling to present repro-
ducibility results to the end user. For example, the pkg
install command could be configured to only allow the
installation of packages that build reproducibly.

Acknowledgments
FreeBSD developers Baptiste Daroussin, Colin Perci-
val, Dag-Erling Smørgrav, and Steve Wills have con-
tributed to base system and ports reproducibility efforts
during my involvement in the project. Some of the
examples of sources of nonreproducibility and corre-
sponding techniques for addressing them are based on
previous presentations by Holger Levsen. Funding for
work on build reproducibility in FreeBSD has been pro-
vided in part by the FreeBSD Foundation and by the
Linux Foundation as part of the Core Infrastructure Ini-
tiative.

References
[1] https://reproducible-builds.org/

[2] Mike Perry, Seth Schoen, Hans Steiner, Re-
producible Builds: Moving Beyond Single
Points of Failure for Software Distribu-
tion, https://media.ccc.de/v/31c3_-_

6240_-_en_-_saal_g_-_201412271400_-_

reproducible_builds_-_mike_perry_-_

seth_schoen_-_hans_steiner

[3] https://en.wikipedia.org/wiki/
XcodeGhost

[4] Thompson, Ken. (1984). Reflections on Trust-
ing Trust, Communications of the ACM,
27(8):761–763.

[5] Wheeler, David A. (2009). Fully Countering Trust-
ing Trust through Diverse Double-Compiling (Doc-
toral dissertation). https://www.dwheeler.

com/trusting-trust/dissertation/

wheeler-trusting-trust-ddc.pdf

[6] Lamb, Chris et al. SOURCE_DATE_EPOCH
specification. https://
reproducible-builds.org/specs/
source-date-epoch/

7

https://reproducible-builds.org/
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://en.wikipedia.org/wiki/XcodeGhost
https://en.wikipedia.org/wiki/XcodeGhost
https://www.dwheeler.com/trusting-trust/dissertation/wheeler-trusting-trust-ddc.pdf
https://www.dwheeler.com/trusting-trust/dissertation/wheeler-trusting-trust-ddc.pdf
https://www.dwheeler.com/trusting-trust/dissertation/wheeler-trusting-trust-ddc.pdf
https://reproducible-builds.org/specs/source-date-epoch/
https://reproducible-builds.org/specs/source-date-epoch/
https://reproducible-builds.org/specs/source-date-epoch/

Table 1: Ports reproducibility progress
SOURCE_DATE_EPOCH

D2032 Stock pkg +build env +Clang
Queued 26046 26046 8600 8565
Non-reproducible 15164 25222 5162 3534 4011
Reproducible 8435 0 20009 5062 4549
Failed 824 875 4 5
Newly reproducible 20009 116 514
Total reproducible 20009 20125 20639
Packages built 23599 25222 25171 25167 25166
Reproducible % 64.3% 0% 79.5% 80.0% 82.0%

Figure 1: Ports reproducibility progress

8

	Introduction
	Security and Software Integrity
	Operational Efficiency

	Reproducible Builds
	Components of a Reproducible Build
	Sources of Non-Reproducibility

	Addressing Nonreproducibility
	Stable order for inputs
	Deterministic version information
	Eliminate build information
	Don't record the current date and time
	Explicitly set environment variables
	Stable order for outputs
	Avoid true randomness
	Avoid volatile inputs
	Controlled value initialization

	Tooling
	SOURCE_DATE_EPOCH
	disorderfs
	strip-nondeterminism
	Diffoscope
	tests.reproducbile-builds.org

	Reproducible FreeBSD
	Base System
	Ports

	Next Steps

