
Master’s Thesis

Idiomatic and Reproducible
Software Builds using
Containers for Reliable

Computing

Jonas Weber

April 18, 2016

Albert-Ludwigs-Universität Freiburg
Faculty of Engineering

Department of Computer Science
Bioinformatics

ar
X

iv
:1

70
2.

02
99

9v
1

 [
cs

.S
E

]
 9

 F
eb

 2
01

7

Eingereichte Masterarbeit gemäß den Bestimmungen der Prüfungsordnung der

Albert-Ludwidgs-Universität Freiburg für den Studiengang Master of Science

(M.Sc.) Informatik vom 19. August 2005.

Bearbeitungszeitraum
12. Januar 2016 - 12. Juli 2016

Gutachter
Prof. Dr. Rolf Backofen
Head of the Group
Chair for Bioinformatics

Zweitgutachter
Prof. Dr. Christoph Scholl
Director
Chair of Operating Systems

Betreuer
Dr. Björn Grüning

Abstract

Containers as the unit of application delivery are the ‘next big thing’ in the

software development world. They enable developers to create an executable

image containing an application bundled with all its dependencies which a user

can run inside a controlled environment with virtualized resources. Complex

workflows for business-critical applications and research environments require

a high degree of reproducibility which can be accomplished using uniquely

identified images as units of computation.

It will be shown in this thesis that the most widely used approaches to create an

image from pre-existing software or from source code lack the ability to provide

idiomaticity in their use of the technology as well as proper reproducibility

safe-guards. In the first part, existing approaches are formalized and discussed

and a new approach is introduced. The approaches are then evaluated using a

suite of three different examples.

This thesis provides a framework for formalizing operations involving a layered

file system, containers and images, and a novel approach to the creation of

images using utility containers and layer donning fulfilling the idiomaticity

and reproducibility criteria.

Zusamenfassung

Container als Methode der Applikationsverteilung sind der neueste Trend

in der Softwareentwicklung. Sie gestatten es Entwicklern, ein ausführbares

Abbild zu erstellen, das die Anwendung mitsamt aller Abhängigkeiten ent-

hält. Dieses Abbild kann dann von Nutzern in einer kontrollierten Umgebung

mit virtualisierten Ressourcen ausgeführt werden. Komplexe Arbeitsabläufe

für unternehmenskritische Anwendung und Forschungsumgebungen verlangen

einen hohen Grad an Wiederholbarkeit, die durch eindeutig identifizierbare

Abbilder als Grundlage der Berechnung erreicht werden können.

In dieser Thesis wird gezeigt, dass die verbreitetsten Ansätze, ein solches

Abbild von bereits existierender Software oder vom Quelltext zu erstellen,

die Möglichkeit vermissen lassen, Idiomazität in der Verwendung der Tech-

nologie und echte Wiederholbarkeit zu gewährleisten. In einem ersten Teil

werden vorhandene Ansätze formalisiert und diskutiert sowie ein neuer Ansatz

vorgestellt. Anschließend werden die Ansätze anhand einer Sammlung von

Beispielprogrammen bewertet.

Diese Thesis bietet ein Framework zur Formalisierung von Vorgängen mit

einem geschichtetes Dateisystem, Containern und Abbildern und einen neuen

Ansatz für die Erstellung von Abbildern mit Utility Containern und Layer

Donning, der die Forderung nach Idiomatizität und Wiederholbarkeit erfüllt.

Table of Contents

1. Introduction 10

2. Theoretical Foundations 13

2.1. Virtualization . 13

2.1.1. Full Operating System Virtualization 13

2.1.2. Kernel based Virtualization 14

2.1.3. Intra-Process Virtualizations 16

2.1.4. Summary . 17

2.2. Container Formats and Implementations 17

2.2.1. Docker Images . 18

2.2.2. App Containers . 18

2.2.3. Open Containers . 20

2.2.4. Summary . 20

2.3. Docker Engine . 20

2.3.1. Layered File System 21

2.3.2. Provisioning with Dockerfiles 26

3. Building and Delivering Software 29

3.1. Introduction . 29

3.2. ‘Legacy’ Approaches . 30

3.2.1. Tarball / Installer . 30

Table of Contents 6

3.2.2. Package Repository . 31

3.2.3. App Stores . 32

3.2.4. Summary . 33

3.3. Existing Approaches . 33

3.3.1. Plain Dockerfile . 33

3.3.2. Squash-And-Load . 36

3.4. Proposed Approach: Utility Containers plus Layer Donning . . 38

3.4.1. Mathematical Formulation 38

3.5. Implementation . 39

3.5.1. Concepts . 39

3.5.2. Architecture . 39

3.5.3. Example . 40

3.6. Evaluation . 42

3.6.1. Test programs . 42

3.6.2. Criteria . 44

3.6.3. Realisation . 45

3.6.4. Execution Environment 50

3.6.5. Results . 50

3.7. Discussion . 56

3.7.1. Idiomaticity . 57

3.7.2. Reproducibility . 57

3.7.3. Containers and Package Managers 58

3.8. Cluster Deployment . 59

4. Application: Mulled 61

4.1. Architecture . 61

4.1.1. Determination of build targets 62

4.1.2. Choice of Technologies 64

Table of Contents 7

4.2. Discussion . 64

5. Related Work 66

5.1. Packer . 66

5.2. Holy Build Box . 66

5.3. AppImageKit . 67

5.4. Global Alliance for Genomics and Health Data Working Group 67

6. Conclusion 70

A. Supplement 72

References 73

List of Figures

2.1. Docker image layers . 23

2.2. Content addressable image layers 26

3.1. Measurement results for ’Hello, World’ example 53

3.2. Measurement results for ’Factorizer’ example 54

3.3. Measurement results for ’Blog’ example 55

4.1. Flow of information access in Mulled 63

List of Tables

3.1. Measurements . 52

List of Abbreviations

API Application Program Interface
AppC Application Container, a container format
CD-ROM Compact Disc in the Read-Only-Memory variant
CPU Central Processing Unit
CWL Common Workflow Language
DEB Debian package format
DWG Data Working Group, a team under the umbrella of the GA4GH
GA4GH Global Alliance for Genomics and Health
GCC GNU Compiler Collection
GNU GNU is not Unix
HTTPS Hypertext Transfer Protocol over SSL, an encrypted and signed

variant of the Hypertext Transfer Protocol.
ISO International Organization for Standardization
JSON Java Script Object Notation
JVM Java Virtual Machine
NPM Node Package Manager, a code repository for NodeJS
OCI Open Container Initiative
PGP Pretty Good Privacy
RPM Red Hat package format and package manager
TSV Tab Separated Values
VM Virtual Machine
WDL Workflow Description Language

1. Introduction

Software-aided research has specific requirements towards the employed tools:
It is important for meaningful research that results of one study are reproducible
by other researchers. The current approach of publishing the source code only
is often insufficient as important details on the exact executed code are missing
(e.g. additional libraries and compiler options/versions). A study by Collberg
et al. about repeatability of studies backed by code came to the conclusion
that only for 54% of reviewed articles the code was compilable at all, just
32.3% of studies were compilable in less than 30 minutes [1].

At the same time, the industry is shifting away from so called big-bang releases
towards policies of continuous integration and deployment to enable quick and
timely feedback from users. Continuous deployment can only reasonably be
done when the compilation, testing and deployment stages of the build process
may execute without the need for a human operator.

Software components usually rely on other software to compile and sometimes
to operate correctly. Different subsets of these dependencies have to be
available in the environment during the different stages of the build mentioned.
It is generally desirable to have exactly the same versions of these dependencies
during all stages on all involved machines to decrease the chances of introducing
unreproducible failures caused by incompatible versions. Furthermore, fast
build-and-test cycles give valuable feedback to the developers as well as
proving that the software works before deploying it to a large scale production
environment.

The recently developed container concept popularized by Docker®1 promises
to resolve this problem by encapsulating all dependencies (software and other
files) of an application into a single and lightweight standalone executable
archive. This provides other researchers or end users with a ‘binary image in
which all the software has already been installed, configured and tested’ [2].

In addition to providing encapsulation it is necessary to describe the exact
steps to be taken to recreate a software image in executable form. Ideally

1Docker® is a registered trademark of Docker, Inc.

1. Introduction 11

each time the build is executed bitwise equivalent images are produced which
enables verification of any images provided by authors. However, current
approaches to building software in containers make it harder to ensure strong
reproducibility.
There are various techniques that can be used to employ a container system
to reproducibly build software and to speed up the image creation process.
By creatively exploiting concepts and build environments like squashing the
resulting layers or designing a container for more than one task it is possi-
ble to optimize different aspects, but using the technology differently than
the developers intended causes a reliance on this particular implementation.
There are guides for each popular programming language and environment
recommending the ‘correct’ use of the technology in patterns called ‘idioms’
that ensure using the language’s or environment’s features best. Some of the
more popular optimizations mentioned above can not be considered idiomatic
with regard to the officially endorsed best practices of container use.
The objective of this thesis is to develop a method for idiomatic and repro-
ducible software builds able to use existing software build tools for automatic
packaging. There is a selection of approaches already available that facilitate
the use of containers in software development workflows. However, as will be
shown in this thesis, neither of them employ containers to their full potential.
The topic for the thesis was handed out by the bioinformatics group as part of
the ongoing Galaxy project which offers a platform for ‘accessible, reproducible,
and transparent computational biomedical research.’ [3]. During the thesis
the author was employed by the Inxmail GmbH in Freiburg im Breisgau. The
remainder of this thesis is structured as follows:
Chapter 2 introduces technologies and approaches to virtualization and in
specific to containers. Furthermore, it defines a mathematical notation for the
image building process and presents an in-depth model of the currently used
container implementations.
Chapter 3 introduces different existing approaches to building software using
containers. Afterwards, it proposes a new approach focussing on reusability
and idiomaticity and introduces an implementation of this approach. The
approaches are compared using an experimental evaluation and discussed.
Chapter 4 gives an overview over the application ‘Mulled’ developed as part of
the thesis. It shows the opportunities offered by utilizing the approach intro-
duced in chapter 3 and proves the applicability in a real-world environment.
This thesis is based on the Docker Engine 1.10. In accordance with the advisor
this thesis was not rewritten for the newer version 1.11 which was released just

1. Introduction 12

before submission. The major difference is the adoption of the Open Container
specification as the basis for Docker containers (see section 2.2.3).

2. Theoretical Foundations

This chapter introduces different concepts for virtualization and explains
their differences. Afterwards, different containerization implementations and
formats are presented. Finally, the Docker model and software are introduced
in greater detail.

2.1. Virtualization

Virtualization as a concept dates back to the first mainframes and the sharing of
resources via time-split approaches. Innovations in the separation of processes
belonging to different users at the operating systems level allowed shared
usage of expensive hardware, thereby giving software the ‘illusion that it has
exclusive access to the underlying hardware platform’ [4]. This illusion can be
used to separate processes both for increased security (processes can’t influence
each other) and for simpler process execution models (processes can assume
full control over the machine).

Support for virtualization on modern processors made it possible to not only
separate processes efficiently, but also to run different operating systems
and even emulate other hardware platforms. Different solutions provide
virtualization at different layers in the soft- and hardware stack with extremely
different characteristics and areas of application. Exemplary implementations
are discussed in the following sections.

2.1.1. Full Operating System Virtualization

Multiple operating systems can be executed on one physical host by different
software tools. One such software is QEMU1 which is able to emulate a whole
computer by providing software implementations for all peripherals normally
found in a personal computer, including hard drives and network cards. If the

1http://qemu.org/

http://qemu.org/

2.1. Virtualization 14

architecture of the virtual computer does not match the architecture of the
hosting machine the processor is emulated in software as well. However, if the
architecture matches, QEMU is able to execute code directly on the host CPU
(see the introduction by Bartholomew [5]) using a technology called KVM2

that allows programs to control a virtualization extension on the CPU.

By fully emulating a computer QEMU is able to execute multiple (possibly
different) operating system instances independent of each other on one host.
Each instance however incurs a cost in the form of the memory and processing
time needed to run the systems. If similar operating systems are used core
services are repeated in each instance, leading to inefficient resource usage.

2.1.2. Kernel based Virtualization

It is often not necessary to have completely separate operating system instances
for each server. Using one kernel instance for multiple virtual machines usually
requires less memory and fewer CPU cycles since internal maintenance tasks
are only executed once.

It is vital for the security and for the safety of a process that only interactions
specifically allowed by the developer between this and other processes can
take place, for example using Shared Memory or other general Inter-Process
Communications. Accordingly, it is one of the core tasks of an operating system
to separate and protect processes from each other. The operating system
(with possibly the help of the underlying chipset) uses different techniques to
make it impossible for normal unprivileged processes to access other processes
memory representing the state of the process, for example using virtual memory
addressing.

There has been a way to change a process’ view of the file system since Unix
Version 7, namely the chroot() system call. It allowed a system administrator
to change the meaning of the root directory (‘/’) for a process. Initially there
was no security code in place to make an escape from this isolation impossible.
According to Siebenmann (see [6]), this probably wasn’t the intention initially
anyway, it was intended to be used to provide an application with its desired
environment. In more recent development iterations it was made impossible
for processes running not in the context of the super user account to escape
the directory they are confined in which enables its use in security related
measures.

2http://www.linux-kvm.org/

http://www.linux-kvm.org/

2.1. Virtualization 15

Recently, the concept of namespaces was introduced into the Linux kernel,
allowing thorough isolation of process groups (a process and possible descendant
processes) from the ‘outside’ world. Each process group ‘adds an additional
indirection [. . .] to the naming/visibility of some Unix resource space’ [7]
which can be used to effectively simulate a different machine to the running
process. This means that a process encapsulated in a namespace has no
access at all on other processes, files, network interfaces etc. outside of its
namespace since the operating systems makes it impossible to even perceive
their existence. Processes outside of any namespace, for instance interactive
console sessions, have an unrestricted view of the whole system, including the
namespaced processes. This is an implementation of the one-way isolation
concept as defined by Liu et al (see [8]). It is also an instance of an ‘API layer
VM’ as described by Yan Wen et al. in their comparison of virtualization
technologies focussing on untrusted code execution [9].

In contrast to the virtualization methods described above, the overhead in-
curred by namespace isolation is almost negligible according to the performance
comparison by Felter et al. (see [10]). Compared to systems like Xen Soltesz
et al. estimate the performance advantage at ‘up to 2x [. . .] for server-type
workloads and [they] scale further while preserving performance’ [11]. Due to
the control over all relevant Unix resources it is however possible to achieve
a level of separation between processes comparable to a complete operating
system virtualization, except of course the sharing of the underlying kernel.
From the perspective of an isolated process there is no difference in behaviour
of the system.

Related to but not part of namespaces is the implementation of control groups
in the Linux kernel. They ‘provide a mechanism for aggregating/partitioning
sets of tasks [. . .] into hierarchical groups [. . .]’ [12]. With this technology,
an operator can impose resource limits on a process group formed by a
process and its descendants. From the isolated process’ view the machine it
is running on only has the defined amount of memory, CPU power etc. The
implementation allows flexible specifications of limits by classifying tasks, and
imposing constraints based on the membership of processes into these classes.
A management service can manage such control groups independently of the
processes’ implementation.

Another implementation of a similar technology are Zones provided by the
Solaris3 operating system. A dedicated ‘global’ Zone is able to manage a set of
dependent Zones, each suited for ‘the needs of [the] particular applications’ [13].

3https://www.oracle.com/solaris/

https://www.oracle.com/solaris/

2.1. Virtualization 16

The small market share of Solaris on servers and most importantly on developer
machines however prohibited a widespread adoption of the technology.

Since the kernel is shared between process groups any vulnerability in the kernel
can potentially be exploited to allow a process to break out of its namespace
and gain full unrestricted access to the host system. There has already been a
number of attacks against the containment implementations in recent years,
for example the exploitation of unneeded, but retained Linux capabilities
Traditionally, a process in UNIX has access to system-wide permissions if it
has the effective user id 0, which is reserved for the root user. Capabilities
‘divide[s] the privileges into distinct units’ [14] which can be held individually.
See the presentation by Barth and Luft [15] for details of this attack. In this
report on the state of container security, the authors add a warning that any
privileged process which can connect to some kernel modules or can access
certain system files could potentially break out of its container. Implementors
have fixed a number of vulnerabilities already (e.g. CVE-2014-3499 [local
privilege escalation] and CVE-2015-3629 [namespace breakout]), but due to
the high number of system calls in the Linux kernel which are potentially
vulnerable an exploit is always a possibility. Additional measures to secure
the systems against a breakout are recommended.

The ‘CIS Docker Benchmark’ by Goyal et al. [16] provides a reference for a
fast and secure environment using the Docker software. It contains detailed
recommendations for running Docker containers, including enabling additional
security features on the host machine.

2.1.3. Intra-Process Virtualizations

Application servers such as GlassFish4 provide an environment for individual
applications that hides the presence of instances of other applications inside
the same process. Similar to cgroups the operator can set restrictions on
resource usage. It is usually possible to start and stop applications running
inside the server without restarting the host process.

The host process (the application server) provides services to the guest using
environment-specific interfaces. This limits the choice of possible development
languages to the ones supported by the application server. For instance, the
GlassFish server supports execution of programs written in a Java Virtual
Machine (JVM)-based language, such as Java or Groovy.

4https://glassfish.java.net/

https://glassfish.java.net/

2.2. Container Formats and Implementations 17

In general, multiple threads of one process can be considered to be a form
of virtualization as well. From the point of view of each thread it has full
control of the computer each time it is running, and direct communication
with other threads (even in the same process) can only happen using interfaces
the runtime environment exposes to them.

The separation between components in this virtualization model isn’t imper-
meable because of the inherent coupling between the different parts of the
process. Cross-component memory access for example is neither preventable
by the environment nor is it desirable to do so as the components necessarily
share an address space and an operating system process and may need the
communication channel provided by the shared memory to accomplish their
task. If one of the threads or applications however causes a process failure,
the entire application server crashes. Additionally, the restriction of environ-
ment to compatible languages greatly limits the choice of technologies for new
projects that have to be executed within the existing context.

2.1.4. Summary

The motivation for developers of containerization software is to create an
environment that supports a wide range of runtime environments to be able
to select the right programming language, frameworks etc. for each individual
application. On the other hand, this environment should incur minimal
overhead in terms of performance and resource requirements.

There are different methods for the virtualization of resources working on
different level in the system and separate components differently. Namespaces
in combination with cgroups provide a ‘lightweight’ [17] virtualization tech-
nology with negligible performance impacts if it is possible to share a kernel
instance among different applications. Other virtualization technologies either
virtualize a whole operating system with the associated cost or require a close
coupling between different applications.

2.2. Container Formats and Implementations

Containers are a loose-defined concept for encapsulation of applications and
their execution. They are usually implemented with namespaces and cgroups,
but implementations using other technologies are in their early stages and
expected to be released in the near future.

2.2. Container Formats and Implementations 18

There are multiple different and incompatible formats by different vendors. In
this section some of them are introduced.

2.2.1. Docker Images

The Docker platform amounts to a market share of almost 80% of respondents
to a survey conducted by O’Reilly and Ruxit (see [18]) in 2015. According to
Peter Biggar (see [19]), the term ‘container’ has been synonymously used with
‘Docker’ until recently.

Docker published an image specification for images of version 1 [20]. Newer
versions of the Docker Engine (starting with version 1.10) can still import
such images, but convert them internally into a newer, not publicly specified
image format. This format will be discussed in greater detail in section 2.3.

2.2.2. App Containers

Because of disapproval towards the company policy of Docker Inc. CoreOS
Inc.5 has been developing its own container engine rkt that fulfils the design
goals CoreOS expects from a production-ready container engine (‘CoreOS is
building a container runtime, rkt’, [21]). Their container engine is built around
a specification for containers called ‘App Container’ (see the specification [22]).

The design goals CoreOS requires from a production-ready container engine
as mentioned in the announcement are:

Composability This is the ability to build higher-order tools from small
building blocks. According to CoreOS, the architecture of Docker consists
of too tightly coupled interfaces that inhibit clear separation of concerns
and make composing additional tools unecessarily hard. The monolithic
design of the Docker daemon is considered to prevent easy addition of
features by external developers.

Security Cryptographic securities and isolation principles should be present
‘from day one’ [21]. The first App Container release already allowed
referencing containers by uniquely identifying cryptographic hashes and
included instructions for crytographic signatures.

Image Distribution The image distribution model of Docker is built around
Docker Hub. Private and independent registries used to use a different
protocol than Docker Hub, and still have to use an additional prefix (the

5https://coreos.com

https://coreos.com

2.2. Container Formats and Implementations 19

address of the registry). For App Containers, the specification comit-
tee designed a federated and decentralized discovery protocol without
mandating the underlying transport protocol. This makes independent
developments with other transmission protocols possible.

Open Although the Docker software is open source the ecosystem is not as
open as the CoreOS developers require it to be. The interfaces powering
the tools should be developed as an open specification by an open
community of developers and not a private company.

The proposed specification of the App Container format is independent from
the rkt engine, and rkt is just one of a growing set of implementations. The
specification is licensed under the Apache license (see [22]). It is structured
into four parts: A specification for images, for image discovery, for a concept
called ‘pods’ and for an executor.

An App Container image consists of the (flat) root file system represented by a
directory and a manifest file describing metadata of the image, packed together
in an archive file. This model differs greatly from the Docker specification
which allows and encourages multiple layers of images stacked on top of each
other.

Each image is identified by a cryptographic hash of its contents. There are
also provisions for encrypting and signing the images using Pretty Good
Privacy (PGP). Execution restrictions can be specified in a metadata block: It
allows to limit the resource usage (memory, CPU etc.) as well as which Linux
capabilities the process may retain.

Names can be assigned to images, conventionally of the form domain.com/name.
The App Container Specification describes a decentralized way to resolve such
names using special instructions in a file retrievable from that name using
HTTPS. These instructions also contain a cryptographic signature of the
image, which enables forwarding the trust placed into the HTTPS connection
towards the actual app container image.

A complete executable unit defined in the specification is called a ‘pod’.
It specifies a set of containers to be executed in parallel and in the same
namespace and cgroup. This means that containers in the same pod are able
to communicate with each other, for example using process signals.

The executor specification defines the exact environment a container can expect
when it is instantiated. The way the abstract metadata and environment
constraints from the pod and image manifests are realized prior the execution
is defined by the specification.

2.3. Docker Engine 20

2.2.3. Open Containers

In an effort to create an industry standard for containers and their environment
the Open Container Initiative (OCI) under the umbrella of the Linux Founda-
tion was founded. The goals of the container format with the same name are,
as postulated in their charter, ‘to build[. . .] a vendor-neutral, portable and
open specification and runtime’ [23]. As a start, the new specification is based
on the format used by Docker.

The foundation’s so called ‘Technical Developer Community’ is tasked with
harmonizing the OCI specification with the App Container specification (see
[23]). Some of the developers behind the App Container specification are
members of this community. Judging by the number and size of the companies
backing this format it is to be expected that the adoption of the specification
will increase in the near future.

2.2.4. Summary

All introduced container formats are quite young and all of them are still
in development. It is probable that the fragmentation will be resolved and
a common standard emerges. The ‘open containers’ format already tries to
bring adaptors of different standards together to create a shared specification.
Although solutions exist that create a bridge between containers of different
specifications, it is in the interest of all adaptors to establish one format
with possibly multiple implementations. The format with currently the most
widespread adoption is the format in use by the Docker engine.

2.3. Docker Engine

The Docker software uses the support in the Linux kernel for isolated containers,
and supplies a toolchain and ecosystem to build, execute, manage and share
such containers. Although commonly obscured there is a difference between
a container and an image: An image serves as an abstract description of
a container, comparable to the notion of classes and objects in common
object-oriented programming languages.

At the time of writing, the Docker ecosystem was in the process of changing
the layer addressing system from random identifiers to a content addressable
scheme. This model doesn’t change the semantics of file system accesses; only

2.3. Docker Engine 21

the way of addressing the layer differs. The consequences of this shift will be
discussed below.

2.3.1. Layered File System

This section introduces the concepts defined by the Docker ecosystem for
accessing, writing and deleting files in a layered file system. A mathemat-
ical formulation is used to make comparing different methods for building
such images possible. The concepts described here are documented from an
implementation point of view in the ‘Docker Image Specification’ [20].
For the following definition the concept of a directory is needed. This definition
closely follows the semantics that are encoded in common file systems. It
allows the lookup of a file by name, which is an instance of a String.

Definition 2.3.1. A partial function d of the form d : String 9 F is called
a directory, where F denotes the set of files6.

A file name may contain directory names, such as /tmp/data/test.txt. A file
is contained in a directory if its file name starts with the name of the directory
ending in a slash. The file mentioned above is contained in the directories
/tmp/ and /tmp/data/ as well as in the root directory /.

Definition 2.3.2. A file with name f is contained in a directory with name
p ending in a slash if and only if f v p. Its name can then be expressed by
the concatenation of p and a suffix f̃ , such that f = (p)(f̃).

During execution a container may have access to multiple directories ‘mounted’
into different location in its file system. These directories can be provided
by other containers for cross-container file sharing, but also directly from the
host system, for instance to enable persistent data storage. For example, if
the directory d′ is mounted into the path /data of the directory d, all accesses
to d/data and files contained in it are evaluated with d′ without the prefix. In
this example the file with name d/data/test/a.txt is given by d′ (/test/a.txt).

Definition 2.3.3. The result of mounting the directory d′ at the location p
into the directory d is given by

d̂ (f) =
d′ (f ′) f = (p)(f ′)
d(f) otherwise

6Symbolic links are as files as well, they are treated as if their target is stored in a file with
the same name.

2.3. Docker Engine 22

Image Layer

The smallest entity in the Docker ecosystem is an image layer. It represents
the changes made to a directory, i.e. it is the difference between two versions
of the same directory, and also contains meta data that further describe these
changes.

Definition 2.3.4. A change is either the creation of a file or its deletion. The
set of changes is defined by C = F ∪ {⊥}, where ⊥ denotes the deletion of a
file. A layer is a partial mapping l ∈ L : String 9 C. The argument of l is
the name of the file that was changed.

The meta data of a layer are serialized on disk in the Java Script Object Nota-
tion (JSON), as defined by Bray and Crockford in RFC 7159 [24]. Information
stored in the meta data is used to construct the image layer stacks and to
start containers.

Definition 2.3.5. There is a function metal : String 9 JSO with l ∈ L and
JSO the set of instances of the data types defined by JSON.

We refer to image layers (and later to containers as well) by their IDs. They
are usually generated randomly.

Definition 2.3.6. An ID is an 256-bit wide number. It is represented in
hexadecimal encoding.

To uniquely identify an image, the value of the meta data key id is restricted
to appear at most once in any given system. It is accordingly possible to get a
layer with this ID:

Definition 2.3.7. There is a partial function layer : String 9 L such that
layer (metal (′id′)) = l and i, j ∈ ID,∀i : ∃layer(j)⇔ layer(i) = layer(j).

Image Layer Stacks

Multiple layers can be stacked on top of each other providing a unified view
over a list of file changes. In Docker images of version 1, each layer has
either one parent layer, or no parent layer (see below for version 2). This
relationship is expressed in the meta data: The key parent is either the ID of
the parent image layer, or it is set to null. The resulting structure is a set of
unidirectional, acyclic graphs of image layers, and these trees are (as can be
seen directly) disjoint, and therefore form a forest.

2.3. Docker Engine 23

Definition 2.3.8. The relation P ⊂ L × L 7 denotes the parent relation-
ship. A pair of layers (i, p) is element of P if and only if parent(i) = p ⇔
metai (′parent′) = metap (′id′).

For easier reference image layers can be given a tag. These tags are composed
of a repository name and a version, separated by a colon (:). By convention,
the version latest is the least recently published version. Apart from this the
semantics of the version are left to the publisher. All image layers tagged with
a common repository name, but a different version form a shared repository.

Definition 2.3.9. The function layerT : (String × String) 9 L maps a
repository name and a version to an image layer.

To execute a container based on an image layer it is necessary to have all
image layers available that are reachable by the parent relation P . These
image layers forming the transitive closure of P are included in the tag.

Figure 2.1.: Docker image layers

Figure 2.1 shows the structure formed by a set of image layers. The composition
arrows point to the parent layer, while the ubuntu:trusty image layer at the
top has no ancestors. Above the tag of an image layer the repositories in which
an image layer is included are marked with an abbreviation. The application
image (‘a’) is based on the Java image which in turn is based on the Ubuntu
image (‘u’). The two versions 25 and 26 of the application have been chosen
to run with the Java runtime in version 8 and share this image, while the older

7It is easy to see that P is a proper subset: In any L × L 6= ∅ there exists at least one
element l̃ such that l̃ has no parent.

2.3. Docker Engine 24

application version 24 still uses the runtime in version 7. The website image
(‘w’) uses an untagged image layer that is in turn a child of the Ubuntu image
(‘u’).

A stack of image layers forms an abstract specification for a concrete container.
An instantiated container sees a combined representation of this stack, as
patented by Hipp et al. in ‘Method and system for an overlay filesystem’ [25].
Containers based on the application image of version 25 therefore has access to
the files ‘changed’ in the layers application:v25, java:8 and ubuntu:trusty
according to the following definition:

Definition 2.3.10. Let c be a container instantiated from image i. Then (for
processes in the container) the file with file name f is given by the function

filei(f) =

δ δ = i(f)
fileparent(i)(f) (i, p) ∈ P
⊥ otherwise

Content Addressable Image Layers

The identifiers of image layers were generated randomly by older versions8

of the Docker software. It was possible to have the same image layer with
multiple identifiers, but more importantly there was no intrinsic connection
between the identifier and the contents. This made testing transferred image
contents for any modifications during transfer impossible.

To mitigate this risk Docker introduced content addressable image layers.
Similar to the addressing scheme used by the Git version control system,
layers are identified by a cryptographic hash of their contents. This makes it
impossible to have accidental or intentional modifications during transit as
long as the correct hash is known by the receiving party.

In the content addressability universe, an image is described by a manifest
denoting the order of layers identified by their hash that in combination
constitute the full image and the configuration object that is used to instantiate
the container. It is identified by a cryptographic hash of its contents and
contains the combined configuration data from the composing layers, using
the semantics from above.

8until and including version 1.9

2.3. Docker Engine 25

In contrast to the legacy addressing model the layers do not form a tree and
layers do not ‘know’ their parent. Using the notation from above, it can be
formalized as follows:

Definition 2.3.11. The sequence of cryptographic hashes h ˜ci2 = (h1, h2, . . .)
stored in the configuration object c̃i denotes the stack of image layers composing
the image named by ĩ2. A cryptographic hash is an instance of Hash.

The corresponding layer can be found in the image store using the cryptographic
hash.

Definition 2.3.12. There is a partial function layer2 : Hash 9 L such that
layer2 (h) = l and a total function hash : L→ Hash hash(l) = h.

The layer2 function is partial because not every cryptographic hash has a
known image layer associated with it. However, it is always possible to calculate
a hash for an image layer.

If an image in the version 2 format is instantiated, the resulting container
uses a file name resolution scheme similar to the one from version 1. However,
instead of recursively using the parent-child relationship it uses the order
imposed by the configuration object of the image:

Definition 2.3.13. For processes in a container instantiated from image i2 in
version 2 format the file with file name f is given by the function file, where
h = h ˜ci2 , i.e. the sequence of layers in the image:

filei2(f) =

δ δ = layer ((h)1) (f)
δ δ = layer ((h)2) (f)

...
δ δ = layer ((h)n) (f)
⊥ otherwise

As long as no layer contains either a deletion or an addition, the layers are
tried in order until a match is found. If the file was never ‘changed’, it is
considered to be non-existent.

If the user is able to trust the validity of the manifest, for example because
it was retrieved over a secure channel from a trusted source, it is possible to
validate layer files retrieved via an insecure connection against these checksums.

2.3. Docker Engine 26

Figure 2.2.: Content addressable image layers

The trust placed in the manifest is expandable to the layer files due to the use
of cryptographic hashes.

Figure 2.2 shows an example containing two images with content addressable
layers: The latest busybox image (using the configuration object aa5d5) as
well as a firefox image (using the object 82937). The latter is based on the
former, i.e. it adds a new image layer on top of the existing busybox stack.
The manifest specifies the repository names and tags for the two images to
point to a configuration object for each of the images and to the cryptographic
hashes of the layers in the correct order. The firefox image shares the two of
the busybox image, and adds another on top.

2.3.2. Provisioning with Dockerfiles

Dockerfiles are an approach built into the Docker software components to
create images based on instructions in a text file. A Dockerfile specifies a base
image and any subsequent changes to make to that image. Each change is

2.3. Docker Engine 27

Listing 2.1: Exemplary Dockerfile
1FROM ubuntu:trusty
2

3RUN apt -get update &&\
4apt -get install -y netcat -traditional
5

6EXPOSE 12345
7USER nobody
8

9CMD ["/bin/bash", "-c", \
10"while true; do nc.traditional\
11-e /bin/cat -klp 12345; done"]

recorded in an image layer, and stacked on top of the previous change. A
subset of the available commands is introduced in the following, based on the
official documentation9:

FROM Sets the base image for the following commands. This command is
mandatory and has to be first in the file.

RUN Executes a command in the context of a container based on the current
image. The resulting image is constructed from the state of the container
after the command terminates.

EXPOSE Containers may choose to expose certain ports to their host com-
puter to offer network services such as web servers. All subsequent layers
will carry this meta information.

USER Each command in the Dockerfile is executed within the context of a
user. By default this is the supervisor user root which is allowed to
do everything in the virtualized system. Commands in layers below
this command only have the permissions of this user, but later USER
invocations can switch back to root.

ADD/COPY With these commands, external files can be copied into the
container at arbitrary locations. COPY is restricted to files in the directory
containing the Dockerfile, while ADD is able to download files from an
URL and to unpack files into a directory in the container.

CMD Registers the argument as default command for this image. If no
command is specified when a container is instantiated, this will be used.

The listing 2.1 shows an example for a simple containerized echo service. The

9https://docs.docker.com/reference/builder/

https://docs.docker.com/reference/builder/

2.3. Docker Engine 28

netcat tool is installed with Apt10, and is configured to run as the user nobody
on container start. When a connection is made to the TCP port 12345 it will
start /bin/cat to handle this connection, giving the impression of an echo
server. This port is exposed to the outside of the container, giving other
containers the possibility to use this service.

Dockerfiles are executed by the Docker daemon by alternately creating con-
tainers and images, each time applying one change corresponding to one line
in the file in an image layer. As an optimisation, Docker reuses intermediate
images generated by earlier stages if the commands have not changed. For
instance, if line 7 is changed in the example listing 2.1, Docker uses the image
generated by line 6 and applies the changes from line 7 and 9 only.

10https://wiki.debian.org/Apt

https://wiki.debian.org/Apt

3. Building and Delivering
Software

In this chapter different approaches to deliver software are outlined and evalu-
ated. The focus is set on a containerized build deployment environment. Firstly,
the process of building software is formalized and then used to investigate the
impact the approaches have on the final deliverable.

3.1. Introduction

For the purpose of this evaluation the meaning of ‘building software’ has to be
defined exactly. While the notion of building software is usually understood
to refer to the generation of executable programs in binary form from a set
of source code files, it is also used in a much wider sense: Generation of
documentation, minification of programs in interpreted languages, and the
execution of test suites are often included into this process. This process
typically consists out of multiple steps that have to be executed in order, and
after the final step has completed a deliverable artefact is present.

Ideally, an artefact is the result of a pure function of the source files. Envi-
ronmental influences are not allowed to take place in this model, for example
the current date and time should not influence the outcome. Current build
systems however do not fully implement this model, but there are attempts
to rectify this, for example in the Debian community1. Since environmental
influences usually manifest themselves in comparably small binary changes and
don’t change the behaviour of the system at large this thesis only considers
the source files as input for a builder function which is defined as:

Definition 3.1.1. A function fξ of the form fξ : D → D is a builder in the
environment ξ, where D is the set of directories as defined above.

1https://wiki.debian.org/ReproducibleBuilds.

https://wiki.debian.org/ReproducibleBuilds

3.2. ‘Legacy’ Approaches 30

The difference between two directories, i.e. the changes that transform a
directory a into directory b is the inverse function of a builder. It is defined as
follows:

Definition 3.1.2. The function diff : D×D → L gives the difference between
two directories a and b defined as follows:

diff (a, b) = ĩ with

ĩ (x) =

b(x) x ∈ dom(a) ∧ dom(b) ∧ a(x) 6= b(x)
b(x) x /∈ dom(a) ∧ x ∈ dom(b)
⊥ x ∈ dom(a) ∧ x /∈ dom(b)

3.2. ‘Legacy’ Approaches

A containerized approach to software delivery is a relatively new concept. Other
technologies are deployed in a large number of systems. This section will
show situations and circumstances in which software delivery with containers
provides advantages, but also shows possible downsides.

3.2.1. Tarball / Installer

Traditionally, much of the available open software was (and still is) distributed
as tarballs, as recommended by the GNU Coding Standards by Stallman et
al. [26] Such distribution tarballs contain all source files needed to compile
the software with a compiler installed on the users machine, producing the
‘non-source files’ such as executable programs.

There are conventions regarding the exact structure and dependencies of
tarballs for successful compilation, but package maintainers are not bound by
restrictions. It is therefore quite common to have special cases for different
packages. Additionally, a quite diverse set of conventions exist. Examples for
tool-supported package conventions are Autotools or Cmake.

The most obvious advantage of this model is the direct availability of the
source code for each package, and the level of control the maintainers have
over distribution: They can just publish a new archive file on their website,
and any user can download and build it. For convenience, Linux distributions

3.2. ‘Legacy’ Approaches 31

like Gentoo2 and its derivates provide their users with tools and scripts to
build software from the source code published by its maintainers on their own
machines. The Homebrew3 package manager offers portable scripts (‘recipes’)
to fetch, compile and install software as well.

However, each user has to have a full compiler suite available to use the
software, and it takes a non-trivial amount of time to build complex software
from sources. The non-standard behaviour of many build systems prohibits
fast and seamless usage of software by inexperienced users.

Dependency management is left to the distributor of the software. Versioning
of shared libraries is not trivial, which makes the management of libraries
hard. Reproducibility is difficult to achieve as the exact compiler versions and
runtime environment has to be reproducible as well.

Distribution of closed source software is usually accomplished with installation
programs that copy the results of the build process into appropriate places
in the file system and establish links to executable programs. Installation
programs are often available on CDs or downloadable from the vendor’s
website.

3.2.2. Package Repository

It is common for Linux distributions such as Debian to be based on a package
system. The life cycles of small units of functionality (files, programs, metadata
etc.), so called packages, are controlled by a dedicated package manager, as
described by Mancinelli et al. [27] Usually, these packages contain the resulting
binaries of a build process, executed on machines of an entity the user trusts.
The most popular and widespread package systems are considered to be the
RedHat Package Manager (RPM) and the Debian packaging manager using
the DEB format (see Mancinelli et al. [27]), but there is a multitude of package
managers addressing different kinds of packages. Other instances are Conda4

designed for Python packages and the Alpine5 package manager apk for the
Linux distribution with the same name.

To facilitate installation procedures package resolvers have been implemented
on top of package managers. They are responsible to resolve any dependencies

2https://gentoo.org/
3http://brew.sh
4http://conda.pydata.org/
5http://alpinelinux.org/

https://gentoo.org/
http://brew.sh
http://conda.pydata.org/
http://alpinelinux.org/

3.2. ‘Legacy’ Approaches 32

and/or conflicts of packages. Package resolvers load packages and meta data
from repositories.

From a user perspective, this provides a simple way to install software to a
computer. Dependencies are handled automatically by the package resolvers,
so software with a deep dependency graph is installable as easily as one
without dependencies. Since most distributions ship with a package resolver
preinstalled usually no additional software is needed to access all functionality
in the packages stored in the repositories.

Package managers can ensure the integrity of the package with cryptographic
checksums, proving that no changes were made after the build process com-
pleted on the build machine. It is left to the maintainers of the build cluster
to make sure that the sources and the binaries are not tampered with before
packaging it.

Usually, a package manager installs all packages into a shared area in the file
system, which makes it possible to reuse common dependencies, for example
the default libraries for executables. However, this is only possible if the
dependencies are ‘compatible’ (as defined by the dependency type, for example
the same Application Binary Interface for shared libraries on Linux).

Without additional steps, installed packages share a namespace in the file
system, i.e. they are able to read and possibly write each others files. They
also share an execution namespace, which means they can see and influence
processes of other packages.

3.2.3. App Stores

A new model for software distribution was popularized in recent years starting
on smartphones, but now also on desktop computers: App Stores like the
Windows Store distribute platform specific binary packages that contain all
dependencies (apart from platform level interfaces) with digital signatures,
and provide ‘a greater degree of separation between apps than [. . .] traditional
desktop apps’ [28]. Other popular app stores and environments provide similar
encapsulation methods: Android uses the ‘underlying Linux security model,
based on user IDs’ [29] to separate file ownership and permissions, and iOS
ensures that ‘apps run in a sandbox and have limited interactions with other
apps’ [30].

Users and developers have the advantage that all dependencies are bundled
together in one package. Each app can rely on its dependencies being there.

3.3. Existing Approaches 33

The platform controls the exact details of encapsulation, restricting and
granting access to resources and inter-app communication.

These packages are not portable across platforms and tied to the respective app
store. Additionally, they are designed for close interaction with the provided
platform, and there are usually restrictions in place preventing the use of these
platforms for general software development.

3.2.4. Summary

It was shown that these approaches to software distribution have certain
disadvantages. Different abstraction levels have been introduced to counter
problems and provide more features.

However, using the shown approaches it is difficult to distribute and deploy
applications without distributing the source, cluttering the file system and at
the same time being portable and maintainable in data centres.

3.3. Existing Approaches

Since the Docker software was first introduced engineers have developed
different approaches to containerize the building process and the resulting
software. A selection is listed here.

3.3.1. Plain Dockerfile

The first approach using the Docker platform is building the software inside the
container it is destined to run in. This can be accomplished with Dockerfiles:
A suitable base image or ancestor layer containing a builder is sufficient.

An example for this approach can be found in listing 3.1. It is based on the
latest Ubuntu base image, and installs the GCC compiler. The WORKDIR and
CMD instructions provide defaults for later execution steps. Afterwards, the
source code file hello.c is copied into the image, and compiled in the next
step. At this point, the image is complete, and prints out the ‘Hello, World!’
message on execution.

3.3. Existing Approaches 34

Listing 3.1: Dockerfile for in-container compilation
1FROM ubuntu:latest
2RUN apt -get update &&\
3apt -get install -y --no -install -recommends gcc &&\
4mkdir /source
5WORKDIR /source
6CMD ["/source/hello"]
7ADD hello.c /source/
8RUN gcc -o hello hello.c

Mathematical Formulation

As was already shown, each command line in a Dockerfile adds a layer on top
of the existing layer stack. In this example, the command in line eight, namely
the execution of the compiler, can be considered a builder according to the
definition above. The input of this builder is the image at the ‘time’ of line
seven. This layer is called i7. The compilation step can then be expressed
using the functions defined above: i8 = fξ(filei7).

Generally, each builder gets the directory created by the layer above, transforms
it according to its rules and returns a new directory. Recursively applied results
in dn+1 = fξn+1 (dn), with d0 either a directory with some content or an empty
directory.

For a Dockerfile with three commands and a base directory d0 the following
equation holds: d̂ = fξ3 (fξ2 (fξ1 (d0))). The persisted image layers are given
by the difference between two intermediate directories, i.e. by

i2 = diff (d1, d2)
= diff (d1, fξ2 (d1))
= fξ2|d1

The stack produced by these layers is exactly the list of changes introduced by
the builder functions: I = (i1, . . . , in). However, the combined list of changes
î = i1 ◦ · · · ◦ in is not the same as the difference between the base directory
and the file system a container is able to see, i.e. in general î 6= diff (d0, fileI).

The image layer stack is generally bigger in terms of amount of data than the
change set between the base directory and the consolidated view on the image

3.3. Existing Approaches 35

layer stack. This is easy to see if the image stack layer is considered to be the
path and the change set to be the distance to the final file system view.

Discussion

The ‘Best Practices for Dockerfiles’ by Docker Inc. recommend using as
few layers as possible, but not sacrificing long term maintainability (see [31]).
However, there are upper bounds to what can be achieved: Multiple consecutive
RUN invocations can be coalesced into one by joining the commands into one
(using shell scripting). Similarly, consecutive ENV commands can be collapsed
as well.

By coalescing multiple RUN commands it is possible to save space in the
generated image, if one of the latter removes files generated by one of the
former. For example, it is quite common to install software using a package
manager such as Apt into a container, but first populating the package cache
prior to installation. If a command that discards the cache afterwards is
executed in the same container, i.e. in the same RUN command, the package
cache files will leave no trace in the final image. An example for this is shown
in listing 3.2.

Listing 3.2: Coalescing RUN commands
1FROM ubuntu:trusty
2# results in three additional layers ,
3# and the baggage of the apt -get cache files
4RUN apt -get update
5RUN apt -get install -y mtr
6RUN apt -get clean &&\
7rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
8# one layer , no baggage
9RUN apt -get update &&\
10apt -get install -y mtr &&\
11apt -get clean &&\
12rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

In cases where different RUN invocations need to be executed using different user
contexts or with different files copied from the host it is not possible to coalesce
them further. This limits the optimizations that are possible and establishes a
lower bound for the image layer count. Additionally, the optimized Dockerfiles

3.3. Existing Approaches 36

contain long lines with multiple commands, optionally spread over multiple
lines.

Another advantage of the build component of Docker that executes the Dock-
erfiles is lost as well: Since the update, installation and cache removal is done
in one step, no caching between steps can help reduce the network traffic
incurred by the step. A Dockerfile using the first part in listing 3.2 reuses the
package files in later steps, while a change to just one subcommand in the
second part triggers a full re-execution of the whole step.

This behaviour incurs significant additional traffic when compiling software
with a package installed and later removed using this method. For example,
the Dockerfile for the official golang repository in version 1.6 in the alpine
variant installs build dependencies, compiles the golang sources, and then
removes the dependencies again in one step (see the Dockerfile by Gravi et al.
[32]). Since the tagged sources of golang don’t change, this step only has to
be executed once for the official Docker image build, but this approach is not
viable for frequently changing sources, i.e. when software is developed.

3.3.2. Squash-And-Load

During the construction of an image with a Dockerfile a stack of internal layers
between the base image and the layer that is at the top of the stack when the
build terminates may accumulate. Due to the immutable stack architecture
each layer is only able to add change sets, but can’t remove any.

When building the image described in listing 3.1, the package manager has to
install the compiler, which is executed only once and then left in the image.
Deleting the compiler package in a later step is not sufficient since this deletion
only records this for new layers, and doesn’t affect any below.

The Docker software provides a direct way to get an archive containing the
files as they can be seen by a program running in a container derived from
an image. This view flattens the stack to a single change set, any related
additions and deletions cancel each other out.

For example, Uhrig recommends flattening the file system by creating a
container and exporting its view of the file system, and creating a new image
from this (see [33]). During this process any meta data is removed, including
the executed command and environment variables, as well as the history of
the image.

3.3. Existing Approaches 37

Jason Wilder offers a tool6 that also squashes multiple layers together, removing
any trace of already deleted files. In difference to Uhrigs approach this tool
extracts the meta data before squashing the layers, and adds them to new
image.

Mathematical Formulation

This approach uses the view a container has on the underlying file system,
and persists this in a new image. This can be formalized as follows:

Let ci be a container ci based on image i. The mapping from file name f to
file is then given by filei(f) (see definition above). The new image layer l′ is
then generated such that l′(f) = filei(f) if and only if f ∈ dom (filei).

Discussion

This approach solves the accumulation of intermediate image layers. Only the
result of the last builder is taken and encapsulated as an image. Applications
with vastly different compile and runtime environments are able to profit
greatly from this approach, for example a Go tool needs a tool suite weighing
around 750 MiB for compilation, but the result may very well be below the 10
MiB threshold.

An implementation detail is the loss of meta data specified in the base image
or the intermediate layers. Tooling can assist the repackaging step, as can be
seen by the multitude of tools already available.

Although only the files visible in the lastly used container are extracted and
packaged this approach is inefficient if a significant part of these files remains
constant over different versions of the image, or is used in other images within
the same host or environment. For example, each Java based application ships
its own virtual machine with each update. It is computationally hard for tools
to detect and efficiently compress shared files in different images.

6https://github.com/jwilder/docker-squash

https://github.com/jwilder/docker-squash

3.4. Proposed Approach: Utility Containers plus Layer Donning 38

3.4. Proposed Approach: Utility Containers plus
Layer Donning

Utility Containers employ the capabilities of a list of images to transform a
directory external to the running container, for example an image containing
the GNU Compiler Collection (GCC) transforming C source code into an exe-
cutable binary. This concept differs from the previously mentioned approaches
by having the utility in the container, but not the transformed code.

Sometimes, the result of a build process is a Docker image as well. To
produce an executable image Layer Donning makes use of the layering
capabilities Docker provides. A base image containing the necessary runtime
environment is used, and extended with a new layer on top. The resulting
image is a deliverable image containing both the runtime environment and
the executable.

Layer Donning differs from the building with Dockerfiles in that it only uses
one additional layer on top, while building with Dockerfiles adds additional
layers for each meta data change, for each executed command and for each
added file. It differs from the squash-and-load approach in making use of the
layering capabilities provided by Docker by attaching a new layer containing
the build result on top of an existing base image.

3.4.1. Mathematical Formulation

The Layer Donning approach can be formalized using the mathematical
notation from above. In each step, the build tool uses one containerized
builder, mounts the source directory into the file system of the container and
uses the resulting directory for the next builder. Again, d0 is considered to be
the base directory.

Each step transforms the resulting directory according to the builder fξn . For
all n greater than 0, the directory in iteration n is given by the inductive
definition dn = fξn+1 (dn−1).

Finally, an image can be created by wrapping any directory d′ (possibly a
subdirectory) into a base image i. The new image will consist of the image
layers comprising i plus the layer created from d′. In the traditional Docker
image storage system this will be i′ with parent (i′) = i. In the content
addressable universe the hash of the new image layer is appended to the list of

3.5. Implementation 39

hashes in i and stored as a new image i′: hci′ = (hci1, . . . , hcin, hash(ix)) with
fileix = d′.

3.5. Implementation

To demonstrate the applicability of the proposed approach to real-world
software development a prototype called Involucro has been realized. This
section introduces the concepts and architecture of this software.

3.5.1. Concepts

Involucro is configured with a Lua program. In this program, the developer
specifies steps that have to be taken to build the script. These steps are
grouped into tasks that can be called from the command-line interface (but
also from other tasks).
The available step types are:

run Runs a Docker container with the current directory made available.
wrap Creates a new image with an optional base image and a specified

directory on top. The resulting image is always tagged into a repository,
the name is specified as part of this step.

run task Executes another task defined in the same file. This can be used to
group some tasks together to form an overall build task.

tag image The name assigned during wrapping is possibly not the only one
an image has. This step type allows assigning another repository name
and tag to an already existing image.

hook This step allows the execution of a Lua function in-between steps. Most
importantly, this function is executed after other steps have already been
run. It is able to modify the build script using results from previous
steps.

push The canonical way for Docker image distribution is via a registry. This
step type allows uploading an image into a registry, making it available
for download from other authorized hosts.

3.5.2. Architecture

Involucro communicates directly with a Docker daemon. This means it is
not necessary to have a Docker client installed on the machine. To increase

3.5. Implementation 40

portability across development machines and due to the widespread adoption
in the container community the programming language Go7 developed by
Google was chosen to implement the software.
The software works in two phases: The control file is read and executed first.
After all tasks have been defined the tasks requested by the user are executed
in order. The set of tasks can be changed during the second phases using
the hook step. This allows the definition of tasks whose definition relies on
the prior execution of other tasks. For example, a compressed file has to be
unpacked first before a task that resizes all images can be defined.
Containers are executed in the same way as the native docker run command
works: The container is created from an image and started with a command. By
default, Involucro mounts the current working directory into the container at
the path /source and sets the working directory for the container to that path
as well. Most containerized tools can be used without further configuration
with this model. Additional configuration options can be set for the container
and for the hosting environment in the control file.
In theory it is possible to import a complete image composed out of multiple
image layers directly into the Docker service. Some versions of Docker even
allowed uploading only parts of the image: The import only succeeded if
omitted image layers were already present on the system, ‘new’ image layers
were able to declare a parent-child relationship to another image layer. When
Docker implemented content addressable image layers the possibility to inspect
the layers comprising an image was removed, making the creation of a multi-
layered image archive based on an existing image impossible at the time of
writing.
The alternative chosen by Involucro is instantiating a container from the new
base image, copying the contents into the desired location and committing it
to a new image. This is the method the native Docker builder uses as well
which makes this method future-proof. It has the disadvantage of copying the
files comprising the new image layer once into the container and then again
into the new image layer when committing but the cost of the extra copy is
hardly noticeable for normal sized image layers.

3.5.3. Example

Listing 3.3 is an example for a control file involving different kinds of steps.
The build system described by this file compiles a dynamic set of single-file C

7https://golang.org/

https://golang.org/

3.5. Implementation 41

programs into executable binaries and packs them together into a common
image and tests it.

Listing 3.3: Example invfile.lua
1inv.task('all')
2.runTask('prep')
3.runTask('gen:file_list ')
4.runTask('gen:tasks')
5.runTask('compile ')
6.runTask('package ')
7.runTask('test')
8

9inv.task('prep')
10.using('busybox:latest ').run('mkdir ', '-p', 'dist')
11

12inv.task('gen:file_list ').using('busybox:latest ')
13.run('/bin/sh', '-c', 'ls -1 *.c |'
14.. 'xargs -I+ basename + .c > .files ')
15

16local compile_all = inv.task('compile ')
17inv.task('gen:tasks').hook(function ()
18for l in io.lines('.files ') do
19inv.task('compile:' .. l)
20.using('frolvlad/alpine -gcc:latest ')
21.run('gcc', l .. '.c', '-o', 'dist/' .. l)
22compile_all.runTask('compile:' .. l)
23end
24end)
25

26inv.task('package ').wrap('dist').inImage('alpine:latest ')
27.at('/usr/local/bin').as('demo/toolset:v1')
28

29inv.task('test').using('demo/toolset:v1')
30.withExpectation ({ stdout = "/usr/local/bin/a"})
31.run('/usr/local/bin/a')

The control file generates a list of files by invoking ls and stripping the suffix
.c to get the name of the executable. This file list is written to the hidden
file .files which is later read by the hook function executed as part of the
gen:tasks task. This task generates the compilation task for each of the source
code files and registers it for execution at the generic compile task. The image

3.6. Evaluation 42

is created using the executables in the dist/ directory. Afterwards the image
is tested by invoking one of the programs and checking if the output matches
the given pattern. The program a in this example prints out the name it is
called with, in this case /usr/local/bin/a. All sub-tasks are executable either
by their name or by invoking the main task all.

3.6. Evaluation

In this section three test programs are introduced and implemented using the
described approaches. The approaches are evaluated against a set of criteria
and the results discussed.

3.6.1. Test programs

The evaluation was done for a set of programs, differing in size and compilation
and runtime complexity. They are introduced here.

‘Hello, World!’ with Busybox

The first and simplest example is to use a Busybox8 image. It contains an
echo tool, which is used to display the greeting ‘Hello, World!’ To display this
message, a shell script in the image will be used. The shell script is shown in
listing 3.4.

Listing 3.4: Shell Script displaying ’Hello World’
#!/ bin/sh

echo "Hello ,␣World!"

Number Factorization in C

The second example is a small tool calculating all prime factors of a positive
number greater than one. The source code written in C is shown in listing 3.5.

8Busybox is a combination of tiny versions of several common UNIX utilities. It is
primarily used in embedded environments, where disk space is usually constrained.
(http://www.busybox.net/).

http://www.busybox.net/

3.6. Evaluation 43

The program reads one number from the standard input and divides it by all
dividers until the number is reduced to 1, at which point the program can
stop. It uses a very inefficient algorithm and could be optimized easily, but is
intentionally kept short and readable for this context.

Listing 3.5: Factorizer
include <stdio.h>
int main() {

int target = 0;
if (scanf("%d", &target) < 1 || target <= 1) {

fprintf(stderr , "Invalid␣number ,␣should␣be␣>␣1\n");
return 1;

}
printf("%d:", target);
int divider = 2;
while(target > 1) {

while (target % divider == 0) {
printf("␣%d", divider);
target /= divider;

}
divider ++;

}
printf("\n");
return 0;

}

Blog with Backend and Frontend

As a third example a simple blog was used. It is implemented as a two-tier
web application with a backend server process and a frontend web interface.
With this example real-world implications of the approaches can be explored.

The Backend Tier Managing and controlling accesses to the storage system
is the responsibility of the backend tier, as well as transforming the native
data structures to a format suitable for transmission to the frontend. In this
case, a HTTP server written in the Go programming language is used to query
data from the database, and send it to the frontend.
Usually an access control component limits certain manipulations of the data
to authorized users only, but for simplicity this backend allows all operations.

3.6. Evaluation 44

The Frontend Tier The frontend is implemented as a single-page application
with the Ember.js9 framework. Described as ‘a framework for creating ambi-
tious web applications’, it provides an overall architecture for the development
of large and complex applications, as well as managing and rendering the data.

Following the advice by the developers of Ember.js the build tool ember-cli
is used to handle assembling the final production files as well as providing a
development environment with incremental builds and automatic reloads.

The code for both components is available in the supplement which is referenced
to in appendix A.

3.6.2. Criteria

In order to evaluate the proposed approach a set of evaluation criteria was
defined. These criteria are shown below:

Initial Compile: Elapsed Time / Traffic This criterion measures the time
and bytes transmitted over the network that are required for a full
compilation of the example if no prior results are available on the system
of the user. For new developers this is the most critical criterion as it
is the amount they have to wait for to get a completely functional tool.
The time and network traffic is measured without any Docker images or
containers present on the system.

The available downspeed has an enormous influence on the time required
to build an image. It is difficult to accurately compare different ap-
proaches by time if they rely on different remote sources to download
the needed tools. To mitigate this influence the actual network data is
measured and discussed as well.

Re-Compile: Elapsed Time / Traffic After one clean build, the time and
network usage is examined again for the next build. A small number
for this criterion means faster feedback for developers and testers of the
software. It is measured just after the initial compile process has been
executed, i.e. it can use any caches or files generated by the other step.
Before the recompilation one of the source code files is changed to force
the compiler to reexecute. The change does not affect the compilation
speed of the file (it doesn’t change the complexity of the file) by changing
the order of commands or the values of string constants.

9http://emberjs.com/

http://emberjs.com/

3.6. Evaluation 45

Size of Deliverable In the end of the building phase there is a deliverable
product that is either downloadable by a client, or deployable into a
data centre. It is advantageous to have smaller deliverables when a user
has to download it via the Internet, but there is a similar situation in
professional data centres: Even though bandwidth and disk space are
cheap it is still desirable from a security point of view to have only the
essential amount of functionality in a container (as proposed by Saltzer
and Schroeder, [34]).

3.6.3. Realisation

In this section the introduced approaches will be applied to the three exemplary
projects.

A ‘Hello World’ Image

The ‘Hello, World’ image has to start the given script printing the message,
and exit afterwards.

With Dockerfile A small Dockerfile is enough to create an image that exhibits
the desired behaviour. The one used in this evaluation is shown in listing 3.6.

Listing 3.6: ’Hello World’ Dockerfile
1FROM busybox
2ADD hello -world.sh /
3CMD ["/bin/sh", "/hello -world.sh"]

Squash-and-Load An image displaying the ‘Hello, World!’ message can
be created with a Squash-and-load approach by instantiating a container,
squashing its contents and loading it as a new image. At the same time, the
default command can be set to be the echo command. Listing 3.7 shows
commands that can be used to create such an image.

Layer Donning Using the Involucro tool from above, the build step can be
encoded using the steps in listing 3.8. The task can be invoked by running
involucro wrap.

3.6. Evaluation 46

Listing 3.7: ’Hello World’ Squash-and-load
ID=$(docker create busybox)
docker cp helloworld.sh $ID:/
docker export $ID | docker import \

-c "CMD␣/bin/sh␣/helloworld.sh" -
docker rm $ID

Listing 3.8: ’Hello World’ using Involucro
1inv.task('wrap')
2.wrap('.')
3.at('/')
4.withConfig ({
5cmd = {"/bin/sh", "/hello -world.sh"}
6})
7.inImage('busybox:latest ')
8.as('test/hello_world ')

Factorization Tool

The factorization tool has to be compiled using a C compiler. When a container
is started, the executable should be invoked and connected to the standard
input and output.

Dockerfile Using a Dockerfile to build the software, a C compiler has to be
installed into the container first. In line with the current recommendations by
Docker Inc. the alpine image will be used as base image. This image is very
small (about 3.2 MiB), but still provides a powerful and complete package
manager. Two variants are shown:

• The compiler is installed, executed and removed in one step after the
source file is added to the image (listing 3.9). This has the advantage
that no trace of the compiler remains in the final image, incurring no
baggage.

• The compiler is installed before the source file is added to the image.
After the compilation step the compiler is removed, leaving only the
executable behind (listing 3.10). This approach uses the caching provided
by Dockerfiles.

3.6. Evaluation 47

Listing 3.9: Factorization tool with Dockerfile (single step)
1FROM alpine
2CMD ["/factorizer"]
3ADD factorizer.c /factorizer.c
4RUN apk update &&\
5apk add gcc &&\
6gcc -O2 /factorizer.c -o /factorizer &&\
7apk del gcc &&\
8rm -rf /var/cache/apk/

Listing 3.10: Factorization tool with Dockerfile (cached steps)
1FROM alpine
2CMD ["/factorizer"]
3RUN apk update && apk add gcc
4ADD factorizer.c /factorizer.c
5RUN gcc -O2 /factorizer.c -o /factorizer &&\
6apk del gcc &&\
7rm -rf /var/cache/apk/

Squash-and-Load The squash-and-load approach can use one of the Dock-
erfiles from above. There is no difference in the end result, but the second one
can utilize build caching.

Layer Donning The factorization tool uses the utility image alpine-gcc by
the user frolvlad in the version latest available on Docker Hub10. This
image contains a C compiler with all necessary dependencies to build software
for an Alpine Linux installation. The control file provides tasks to build the
executable and to wrap it in an image for distribution. It is shown in listing
3.11.

Blog

The backend code of the blog engine implements a basic HTTP server for the
API calls. Using this API, posts and comments can be created, updated, read,
and deleted. It persists the corresponding records in the database.

10https://hub.docker.com/r/frolvlad/alpine-gcc

https://hub.docker.com/r/frolvlad/alpine-gcc

3.6. Evaluation 48

Listing 3.11: Factorization tool using Involucro
1inv.task('build ')
2.using("frolvlad/alpine -gcc:latest")
3.run('/bin/sh', '-c', 'mkdir -p dist && '
4.. 'gcc -o dist/factorizer factorizer.c ')
5

6inv.task('package ')
7.wrap('dist')
8.inImage('alpine :3.3')
9.at("/")
10.withConfig ({cmd = {"/factorizer"}})
11.as("test/factorization")

Prior to deployment, the frontend code is compiled into a reduced and deliver-
able form which can be executed by a browser. The result of this compilation
step is a static HTML file and a set of associated stylesheets and JavaScript
files. During development, they are served by the development tool ember-cli
allowing for automatic reloading of the web application upon changes to the
source code. In production builds however these files are delivered by the blog
engine.

Dockerfile The image is based on the alpine image as well. After all
(cacheable) meta data are set the packages from the alpine and from the npm
repository that are needed for compilation of both parts are installed. For the
backend part the Go compiler is required, the frontend calls for the ember-cli
tool as well as the bower code manager.

Before the frontend code is copied into the container the files controlling
the installation of additional dependencies are added and the dependencies
installed. Due to this, dependencies are cached when the source code changes,
and only reinstalled upon changes to the dependency specifications. Afterwards,
the backend code is copied into the container, dependencies are fetched and
the code is built. The resulting Dockerfile is shown in listing 3.12.

For the criterion ‘Time to Recompile’ the code is changed to reflect work by
developers. This example is ‘changed’ twice: once with a modification in the
frontend and once in the backend.

3.6. Evaluation 49

Listing 3.12: Blog Engine Dockerfile
1FROM alpine
2EXPOSE 8040
3WORKDIR /blog/
4ENV GOPATH =/go
5RUN apk --no -cache add go nodejs git &&\
6mkdir -p /blog/frontend/ && \
7npm install -g npm &&\
8npm install -g ember -cli bower
9

10ADD backend/ /go/src/github.com/thriqon/backend/
11RUN go build -o /blog/blog github.com/thriqon/backend/
12

13ADD frontend/package.json /frontend/
14ADD frontend/npm -shrinkwrap.json /frontend/
15ADD frontend/bower.json /frontend/
16RUN cd /frontend/ &&\
17npm install &&\
18bower --allow -root install
19ADD frontend/ /frontend/
20RUN cd /frontend/ &&\
21ember build -prod --output -path /blog/frontend/

Squash-and-Load The squash-and-load method uses a similar Dockerfile to
create the initial image. There is an added command in the end that removes
all non-essential files from the image. This command is shown in listing 3.13.
Afterwards, the process creates a flattened version of the image which is the
final result.

Listing 3.13: Blog Engine Squash-and-Load
1# [...]
2RUN npm uninstall -g ember -cli bower &&\
3apk del go nodejs git &&\
4rm -r /frontend /go /root/.npm /tmp/npm* /root/. cache/ \
5/usr/lib/node_modules/ /tmp/async -disk -cache/

Layer Donning The two components of the application are compiled sepa-
rately in different tasks. The backend compilation using the official golang

3.6. Evaluation 50

repository is executed first. It puts the generated executable inside the dist/
directory which will later be packaged into an image. The frontend is compiled
using a small utility image containing a NodeJS environment with the Ember
build tool preinstalled. The compiled application is written to a subdirectory
in the dist/ directory from which the static files will be served by the backend.
The control file for Involucro is shown in listing 3.14.
Each time the frontend is to be built the dependencies published in NPM and
Bower are checked for updates and completeness. In a real world application
these checks would be moved out of the main recompilation step as they are
rather time consuming and network reliant. In this evaluation however this
step was included to be able to directly compare the approaches without
adding additional optimizations.
However, using Involucro allows programmers to use certain optimizations in
the build process when they know that certain steps are not needed to be
executed (again). In the blog example, most of the time in the recompilation
case was spent by the package manager validating the installation of all
frontend modules for completeness. This check can be omitted if the developer
knows there were no changes.

3.6.4. Execution Environment

The measurements were taken using a custom test application executed on a 1gb
instance in the fra1 region on Digital Ocean using the CoreOS 1000.0.0 image.
Additionally, the Involucro program described in section 3.5 was downloaded
and made available for the test application. After each measurement all
remaining images and containers were removed from the system to isolate the
measurements.
The network measurements are gathered by summing the traffic generated
during the run of the experiments on all network interfaces as counted by the
Linux kernel. Each experiment was run multiple times and the average number
for each data point was used. This procedure was repeated over multiple days
to rule out transient influences.

3.6.5. Results

The results of the evaluation program is shown in table 3.1. The numbers are
visualized graphically in a diagram for each evaluation example and discussed
below.

3.6. Evaluation 51

Listing 3.14: Blog Engine Layer Donning
1local package = "github.com/thriqon/blog"
2inv.task('build:server ').using('golang :1.6')
3.withConfig ({
4env = {"CGO_ENABLED =0"},
5workingdir = "/go/src/" .. package ,
6})
7.withHostConfig ({binds = {
8"./backend :/go/src/" .. package , "./dist:/dist"
9}})
10.run('go', 'build ', '-o', '/dist/blog', './.')
11

12inv.task('build:frontend ')
13.using('thriqon/alpine -ember -cli:latest ')
14.withConfig ({ entrypoint = {"/bin/sh", "-c"}})
15.withHostConfig ({binds = {
16'./frontend :/ source ',
17'./dist:/dist'
18}})
19.run('npm install && bower install --allow -root')
20.run('ember build -prod --output -path=/dist/frontend ')
21

22inv.task('build ')
23.using('thriqon/alpine -ember -cli:latest ')
24.withConfig ({ entrypoint = {"/bin/sh", "-c"}})
25.run('mkdir -p dist')
26.runTask('build:server ')
27.runTask('build:frontend ')
28

29inv.task('package ')
30.wrap('dist').at('/srv')
31.withConfig ({cmd = {"/srv/blog"}}) .as(VAR.TAG)

3.6. Evaluation 52

Table 3.1.: Measurements

Name Initial Compile Recompile Size
KiB ms KiB ms KiB

Hello, World
Dockerfile 748 2,558 0 339 1,086
Squash and Load 748 2,794 0 393 1,086
Layer Donning 748 2,352 0 188 1,086

Factorizer
Dockerfile a 119,067 7,507 116,719 4,928 5,343
Dockerfile b 119,094 11,207 6 1,540 92,608
Squash and Load 119,268 10,552 116,807 8,306 4,692
Layer Donning 48,929 18,754 3 782 4,692

Blog
Dockerfile JS 431,817 475,658 73 71,769 473,635
Dockerfile Go 430,215 498,301 68,845 287,367 473,635
Squash and Load 433,128 512,215 68,965 329,781 12,700
Layer Donning 410,628 302,897 3,089 82,960 8,736

‘Hello, World’ Example

In the first example, a Docker image that shows the ‘Hello, World’ message is
created. All three approaches use similar commands to copy the script into the
image and set the command for execution. The results are shown in diagram
3.1.

On the first run, it is necessary for all three approaches to load the base
image from Docker Hub. This accounts for the 747 KiB of data used by all
approaches and for most of the time elapsed.

Afterwards, as a way to simulate a change to the programs code the script
is changed to display a different message (‘Hello, Moon’). The time
and data needed to recreate the image is slightly smaller for the layer
donning approach. This may be attributed to the single-step encapsulation
implementation of Involucro instead of the two-step approach used by the
native Docker builder. This difference however is unlikely to surface in real-
world applications.

The deliverable image has the same size in all three approaches (1, 086 KiB).

3.6. Evaluation 53

Figure 3.1.: Measurement results for ’Hello, World’ example

Do
cke
rfil
e

(Si
ze:

108
6 K

iB)

Sq
ua
sh
an
d L

oad

(Si
ze:

108
6 K

iB)

La
yer

Do
nn
ing

(Si
ze:

108
6 K

iB)

0

200

400

600

800

Tr
an

sm
itt

ed
da

ta
in

K
iB

0

1,000

2,000

3,000

T
im

e
in

m
s

Factorizer Example

The factorizer example uses two different exemplary Dockerfiles to build the
final image. The first version (a) shown in listing 3.9 executes all installation
and compilation tasks in one container, while the second version (b) in listing
3.10 separates the installation and compilation steps to enable the use of an
intermediate cache. Both versions have to download a set of dependencies
needed to compile the source code into an executable. The amount of
transmitted data is almost equal in both instances, but the time needed
is higher for the second version. This is due to the intermediate commits and
container creations.

When the tool is recompiled after a change to the source code the second
version can use the cache to resume the image creation just after the file has
been added. Only the actual compilation is left to do. This leads to a negligible
amount of transmitted data and a significantly lower execution time.
The cache that lowers the recompilation time is paid for by an increased
deliverable size. The deliverable produced by the squash-and-load is a few
hundred KiB smaller than the result produced by the first Dockerfile version.
This can be explained by the different number of layers in the final image.

The layer donning approach uses less transmitted data but takes longer

3.6. Evaluation 54

Figure 3.2.: Measurement results for ’Factorizer’ example

Do
cke
rfil
e a

(Si
ze:

534
3 K

iB)

Do
cke
rfil
e b

(Si
ze:

926
08
Ki
B)

Sq
ua
sh
an
d L

oad

(Si
ze:

469
2 K

iB)

La
yer

Do
nn
ing

(Si
ze:

469
2 K

iB)

0

50,000

100,000

Tr
an

sm
itt

ed
da

ta
in

K
iB

0

5,000

10,000

15,000

20,000

T
im

e
in

m
s

in the first run. This can be attributed to different download speeds from
different hosts. Measurements indicate a higher bandwidth when downloading
from the Alpine repository in comparison with Docker Hub (around 80 MB/s
in contrast with 808 KB/s).

The two Dockerfile versions and the squash-and-load approach each excel in
one category. The first version and the squash-and-load approach produce a
small deliverable at the cost of runtime and transmitted data in a recompilation
while the second version manages to compile the code again with minimal
repeated downloads. The layer donning approach however is able to produce
a deliverable of the same size as the squash-and-load approach. Additionally,
it takes less time than the best Dockerfile-based approach.

Blog Example

The blog example is made up of two independent build targets. They are
compiled in sequence in all versions. In this example however the impact of
the one dimensional Docker build cache can be seen.

The initial build uses similar amounts of data and time for all ap-
proaches. The increased time needed for the squash-and-load approach might

3.6. Evaluation 55

Figure 3.3.: Measurement results for ’Blog’ example

Do
cke
rfil
e J
S

(Si
ze:

473
635

Ki
B)

Do
cke
rfil
e G

o

(Si
ze:

473
635

Ki
B)

Sq
ua
sh
an
d L

oad

(Si
ze:

127
00
Ki
B)

La
yer

Do
nn
ing

(Si
ze:

873
6 K

iB)

0

100,000

200,000

300,000

400,000

Tr
an

sm
itt

ed
da

ta
in

K
iB

0

200,000

400,000
T
im

e
in

m
s

be attributable to the additional cleaning steps which take non-trivial time.

The two experiments with the Dockerfile show the difference between executions
that occurs with the same Dockerfile (listing 3.12) but with a different file
change: In the first experiment the code of the frontend is changed by the
test environment and the application is recompiled. The second experiment
changes the code of the backend and invokes the recompilation.

In the first case the Docker build cache enables the process to skip downloading
and installing the dependencies of the frontend again because nothing was
changed in the Dockerfile and all ADDed files up to this point. Cached images
are used to resume building at the point of the first change in files.

The second example is able to use the Docker build cache as well but only
up to the point of the addition of the backend server code. With the new file
revision in place the previously used cache is invalidated and all dependencies
for the frontend have to be fetched again. This cache invalidation explains
the increased data and time for the recompilation step in the second
example.

Similar to the factorizer example the squash-and-load approach fetches the
dependencies anew. Using more time it manages to decrease the size of the
deliverable to around 2.5% of the size produced by the Dockerfiles. This

3.7. Discussion 56

additional time is spent removing the build dependencies from the image
and squashing it into one layer. Similar to the factorization example, the
deliverable produced by the squash-and-load approach only contains one layer.
This means that any update to the image contents necessitates a full refetch
of the whole layer.

The squash-and-load approach is only tested with a change in the backend code.
A change in the frontend code will lead to a similar performance characteristic
as the first Dockerfile experiment.

The layer donning approach uses specialized images to compile the two com-
ponents. It utilizes the official Golang image for the backend and a specialized
ember-cli image for the frontend. This allows for a speed improvement
over the other approaches, possibly attributable to the needlessness of cal-
culating the tree of dependencies when installing the tool directly from the
repository. The transmitted data however is similar.

In the recompilation case only very little data is transmitted. This could be
reduced further by omitting the installation step for the frontend dependencies
when developers exploit their knowledge of changes in the dependency control
file. By omitting this step the time required for a recompilation can also
be further reduced.

The squash-and-load approach as well as the layer donning approach produce
images in the 1 to 20 MiB range. These images do not have NodeJS installed
because it is not needed to serve the blog. On the other hand, the image build
with a Dockerfile uses almost 500 MiB. This includes a full installation of the
Go compiler as well as a full installation of NodeJS and the Ember compilation
utility.

3.7. Discussion

The results demonstrate that the layer donning approach uses less or similar
time and transmitted network data to produce a smaller or similar sized
deliverable image. This holds true for the recompilation case as well. From a
performance perspective the proposed approach can accordingly be considered
advantageous.

The control file for Involucro is an executable program in a Turing-complete
language offering a rich API to developers. This allows full programmatic
control over the build system, but this flexibility is paid for by increased
complexity and consequently a steeper learning curve than a simple and easy

3.7. Discussion 57

to learn Dockerfile. However, the primary design criterion of building software
allows the assumption that the majority users will have prior programming
experience and welcome the additional possibilities.

3.7.1. Idiomaticity

A container is started around a single process and its child processes. As
soon as that process dies the whole container is terminated. It is possible to
instantiate different applications with their processes managed by a common
supervisor process in a single container, but this makes process management
harder as there would be multiple process hierarchies instead of one. This
principle is expressed in the idiom ‘Run only one process per container’ [31].

The prevalent approaches to image construction promote using multiple dif-
ferent programs inside containers instantiated from the same image. This
defeats the single-purpose design an image is supposed to have. Having the
functionality of a full package management system or a compiler suite in an
application image is usually neither necessary nor beneficial from a security
point of view. Single-purpose images tend to be of lower size which additionally
speeds up transmission steps and reduces network congestion, making the
transition to a containerized software delivery system easier for developers.

The proposed approach uses specialized utility containers that do one job
only, and uses layer donning to create a new image with exactly one purpose.
This approach directly fulfils the requirements placed onto idiomatic image
creation.

3.7.2. Reproducibility

Dockerfiles are often advertised in favour of other methods to create a Docker
image because it is supposed to make it possible to retake the steps taken
to build the image. Reproducible containers based on reproducible images
are the foundations for reproducible computations. Scientific experiments
conventionally attempt to make their results reproducible by describing the
exact state of all components to enable other researches to check the results.

In the context software building and delivery, reproducibility means that the
exact same software has to be made available. Usually, the same (developer
managed) version number is used, but is preferable to make sure that binaries
in use are bitwise equivalent.

3.7. Discussion 58

It is easy to see that only if the ‘ingredients’ for a Docker image are reproducible
the whole image can be considered reproducible. However, if any of the software
components in an environment is installed via a ‘normal’ package manager
such as Apt, it is possible that different users get different package revisions
when fetching the packages at different times. This insecurity regarding the
exact bitwise version is forwarded to an image construction process, because
packages installed from a package manager are usually specified by name only,
or are downloaded from an uncontrolled remote host.

Dockerfiles provide no safety here: Without additional constraints imposed by
maintainers of the files they only document the commands used to build the
image, not the actual ‘ingredients’, i.e. the files that make up the image. The
official images provided by Docker provide this safety, as the maintainers only
accept Dockerfiles that use checksummed files. This restriction does not apply
to general Dockerfiles, however.

The proposed layer-donning approach provides this safety by default: If all used
utility images are referenced by an immutable tag, for example a checksum for
a content addressed image, the resulting image is reproducible from the build
recipe in combination with the source files. This can be seen from above: A
sequence of reproducible builders (fξ)n forms a combined builder f̂ξ by chained
application of the intermediate results, such that f̂ξ = (fξ)1 ◦ (fξ)2 ◦ · · · ◦ (fξ)n,
which itself is reproducible.

Source code of software is usually kept in a version control system such as
Git11. It is possible to get an exact copy of a directory at a given time from a
version control system. In combination with reproducible builders the whole
build workflow is accordingly reproducible.

A containerized workflow using the proposed approach can use utility containers
instantiated from images uniquely identified by their cryptographic hash.
This assurance of bitwise equal compiler images is not present when using
a compiler executable installed from a traditional package manager on a
developer workstation.

3.7.3. Containers and Package Managers

Software delivery with containers brings up the question of the role of package
managers in a containerized environment. Traditionally, it has been the task
of package managers to make software available to users, to supply them

11http://git-scm.org

http://git-scm.org

3.8. Cluster Deployment 59

with updates and to manage the lifecycles of associated files. These tasks are
handled by container management tools as well.
An image encapsulates an application with all its dependencies, while a package
manager typically packages parts that compose the final application. Common
libraries are managed by the package manager and made available to other
packages. However, a library package on its own can’t constitute an executable
container. Images are typically only created for executable applications.
Widespread package managers have transparent mechanisms to ensure the
integrity of the packages with respect to the original sources, for example with
cryptographic signatures of the generated package files (see Cappos et al. [35]).
Some container formats already include a safe approach to sign and verify the
correct and untampered transmission from a trusted builder, but it is vital for
the trust in container platforms to make it possible to reproduce the image
building process as well.
A study by Gummaraju et al. discovered that around 30% of the official
repositories in Docker Hub contain images that are vulnerable to ‘a variety of
security attacks’ [36]. Their recommendation is to frequently rebuild images
with the latest software revisions to alleviate the risk of running vulnerable
software. On the other hand, package managers in widespread use usually have
some sort of update mechanism to distribute patches to vulnerable software
in a reasonable amount of time.

3.8. Cluster Deployment

After packaging software into a container the software can be made available
to the user for download, for example in a publicly available registry. Software
that powers network services however is often not published for download but
deployed into a data centre operated by the developing company. Containers
are particularly suited as a unit of deployment because of their lightweight
and standalone nature.
Google has been running their software in containers for over a decade (see
[37]) using different container management systems. These systems enable
them to manage containers in the scale of ‘hundreds of thousands jobs’ [38]
across their data centres.
Recently, Google published Kubernetes12, a new and open source iteration of
their container management software. It handles scheduling containers onto
12http://kubernetes.io/

http://kubernetes.io/

3.8. Cluster Deployment 60

nodes in a cluster. A set of containers can form a pod, which is always scheduled
jointly. Multiple instances of the same pod specification are managed by a
replication controller and can provide a service. Stateless services control the
scheduling of pods onto nodes according to the specifications of replication
controllers and services.

4. Application: Mulled

Traditional approaches towards software distribution have certain flaws, as
was shown above. To demonstrate the practicability of using containers as a
means to deliver software a system for automated packaging was developed
and evaluated. This section introduces the concepts and design decisions as
well as the evaluation results by members of the container community.

Mulled was designed to be a system for largely unattended building and
uploading of Docker images containing fully functional installations of open
source software. The only interaction required is the specification of a Mulled
image in a configuration file. After the build has terminated, the finished
image is ready for download by the user.

To combat the problem of non-standard build systems and complex dependency
management various package managers have been developed that encode the
build steps for one package in a standardized format similar to a shell script.
Mulled contains adapters that allow utilizing these repositories of build scripts.
After the packages have been installed in a location, a Docker image is generated
with the result and uploaded to a public repository.

4.1. Architecture

Mulled is controlled by a repository on GitHub1, containing the source code of
Mulled and the package specification file, formatted as a Tab-Separated-Values
(TSV) formatted file. An example is shown in listing 4.1. Each line in this file
specifies one package with four fields:

Packager This field sets the package manager that is used to install the
package.

Package The name of the package in the package manager and in the Mulled
repository.

1https://github.com

https://github.com

4.1. Architecture 62

Revision Mulled allows multiple revisions of images to coexist at the same
time. With this field, it is possible to enumerate multiple revisions by
repeating the package line with different revision values. Some packagers
are able to explicitly install specific versions and interpret this revision
field directly.

Test Unfortunately, packaging is not trivial, since all dependencies have to be
contained inside the package. However, before publishing it is obviously
desirable to verify the correctness of the package. This field provides a
shell script that is executed in the context of the new image, and is able
to execute any tests necessary to verify it.

Listing 4.1: Example ‘packages.tsv‘
Packager Package Revision Test
conda tmux 2.1--1 tmux -V
alpine go 1 go version | grep 'go version '

When a commit is pushed into the GitHub repository, a build job is created
automatically on Travis CI2. This job runs the build script and optionally
pushes the result image into a public repository on Quay.io3. This push
only happens when the package specification has been accepted into the
repository, i.e. when the commit appears on master. Figure 4.1 shows the flow
of information in Mulled.

4.1.1. Determination of build targets

Any time the table changes on GitHub, the build script compares the revision
information stored in the data directory of the Mulled instance (the actual
state) with the information stored in the table (the desired state). Additions
in the desired state are resolved by building the given package. These states
are treated as sets of package name and revision pairs. If the sets of pack-
age/revision pairs in the actual state is A and D in the desired state, the
packages that need to be rebuilt are: R = D \ A.
Another possible model is to evaluate the differences between two states of
the table by looking at the log of the version control system. The advantage
is that the build script does not rely on external systems and is faster due to
less network communication. However, if a build fails for any reason, this may
result in packages that are not built and published, but also not easily rebuilt,
since there is no build for them that can be restarted.

2https://travis-ci.org
3https://quay.io

https://travis-ci.org
https://quay.io

4.1. Architecture 63

Figure 4.1.: Flow of information access in Mulled

Hooks
Statuses API

create/update repositories
push images

hello coreutils irssi samtools

1 1 1 1.20

2 2 1.31

3

linuxbrew hello 2 $(hello) = "hello"

linuxbrew coreutils 3 $(factor 15) = "15: 3 5"

alpine irssi 1 irssi version

conda samtools 1.31 samtools version

conda samtools 1.20 samtools version

mulled/mulled

Upload/fetch build logs

build logs

User

https://mulled.github.io/

find package

do
ck
er
 ru
n
...

Developers

Pull Request
Push

load package
definitions

for each $package where ſ$package, $revisionƀ not already built do

 in docker imageſ'tool/$builder'ƀ run
 $builder install $package into $volume
 end

 wrapſ$volumeƀ inImageſ'busybox'ƀ asſ'mulled/$package'ƀ
 in docker imageſ'mulled/$package'ƀ run
 $test
 end

 if not is pull_request do
 push_to_quayſ'mulled/$package'ƀ
 upload_to_githubſ$build_logƀ
 end

end

conda

packages.tsv

4.2. Discussion 64

4.1.2. Choice of Technologies

There are several publicly available systems that allow execution of a build job
when the code in a GitHub repository changes. These systems are commonly
used for Continuous Integration, but can also be used for this use case:
Continuous Integration services provide a neutral, unbiased service that can
be used to validate a new revision (of code, for example) against a set of rules,
for example a test suite (see Meyer [39]). In Mulled, the ‘change’ to be tested
is the inclusion of a new package, and the ‘rule validation’ is the successful
run of the build and test scripts.

Travis CI was chosen for this part of the system for the following reasons:

• Available for open source projects for free: Projects that are hosted in
public GitHub repositories are eligible for cost-free builds on the Travis
CI infrastructure (see Travis CI plans [40]).

• Travis CI supports a builder mode allowing for nested virtualization.
This means that it is possible to have a fully functional Docker daemon
inside a build job. Other continuous integration systems execute the build
job itself in a Docker container, and do not allow spawning additional
containers, which, however, is required to use the Involucro software.

• Close integration with GitHub: Travis CI can be configured to build
every proposed change as soon as it is submitted, and the result of this
build is displayed in the GitHub user interface. Due to this automatic
testing feature a repository administrator can safely accept new packages.

The default for Docker image hosting is directly encoded into the Docker
source code to be the Docker Hub. This default was not suitable for Mulled
because the offered API is lacking the important feature of managing repos-
itories programmatically. Quay.io on the other hand allows full repository
administration with authenticated network calls, and (similar to Travis CI)
offers a free tier for images that are publicly available.

4.2. Discussion

In theory, package managers provide their packages with proper dependency
meta data. It should be possible to install a package and have all required
code installed afterwards to use the software in a reasonable way. However, it
remains unspecified what pre-existing software the package managers expect
to exist in the target. For example, during the development of Mulled it was

4.2. Discussion 65

discovered that a few packages in the bioconda4 repository depend on the
zlib5 library to be present but did not depend on it in a ‘formal’ way. These
bugs were not discovered earlier because the zlib library is available on most
developer machines. In addition to providing a repository of containerized
software Mulled can therefore be used to validate dependency specifications.

Each Docker image has to have a version string. In Mulled, this has to be
derived from the revision identifier specified in the control file to enable efficient
correlation of already built images and package specifications. Unfortunately,
only some package managers allow installing specific versions of packages, the
rest offers the most recent version only. This makes reproducing previously
built packages difficult as the exact sources used for the build are depending on
the time the package is built. A builder that supports exact version matching
like the bioconda builder based on the Anaconda package manager is helpful
here.

4https://github.com/bioconda/bioconda-recipes
5http://www.zlib.net/

https://github.com/bioconda/bioconda-recipes
http://www.zlib.net/

5. Related Work

In this chapter other work for idiomatic and reproducible container builds are
reviewed.

5.1. Packer

HashiCorp develops Packer which aims to create ‘identical machine images for
multiple platforms from a single configuration’ [41]. It is able to create images
in a wide range of formats, including Docker.

The tool takes a configuration file and applies the commands on a container
instantiated from a base image. After the successful execution the new
container is saved as an image and optionally tagged into a repository.

This type of packaging flow is an instance of the squash-and-load approach,
but without building the layers in between. From the perspective of this thesis,
it provides little benefit in terms of efficiency (there is no caching between
steps).

HashiCorp recommends provisioning a Docker image the same way a con-
ventional virtual machine is provisioned, for example using a configuration
management system such as Ansible or Chef. Treating a container as a virtual
machine is possible but not idiomatic. A lightweight container should only
contain one process and fulfil a single purpose (see Melia et al. [42]).

5.2. Holy Build Box

The Holy Build Box is a system for ‘building cross-distribution Linux binaries’
[43]. Due to inconsistencies in the location and exact version of libraries and
configuration files it is traditionally problematic to run binaries compiled under
another Linux distribution. The Holy Build Box attempts to solve this by
statically linking most libraries except those that are expected to be present

5.3. AppImageKit 67

on all target machines. This strategy enables finding the ‘sweet spot’ between
full static and full dynamic linking.

Unfortunately, this approach only allows distribution of binaries that can take
the form of Linux binaries. Other types of deliverables are not covered by this
tool.

5.3. AppImageKit

AppImageKit1 was developed to solve the problem of packaging additional
resources for an application, for instance libraries and images. It allows
the maintainer of a software product to create one distributable file that is
executable across a wide range of Linux distributions.

Internally, the kit uses a small setup utility which mounts an ISO9660 file
system image (conventionally used for CD-ROMs) containing the executable
and its resources. Updates can be applied incrementally using an official tool
by the developers.

AppImageKit is designed to enable distribution of applications onto the comput-
ers of end users. Currently, it does not employ additional sandbox technology
that would isolate the program from the host system which enables an end user
to work with the program exactly the same, i.e. their files are accessible in the
usual locations. On the other hand, this limits the usefulness in environments
where applications should be separated cleanly from each other, for example
to fulfil compliance policies.

5.4. Global Alliance for Genomics and Health
Data Working Group

The Global Alliance for Genomics and Health (GA4GH) Data Working Group
(DWG)2 is a part of the Global Alliance3 for Genomics & Health. It has a
team tasked with ‘coordinating efforts around the development of languages
for describing repeatable genomic workflows’ [44]. They are in the process of
specifying the Common Workflow Language (CWL)4 based on YAML which

1http://appimage.org
2http://ga4gh.org/#/
3https://genomicsandhealth.org/
4http://www.commonwl.org/

http://appimage.org
http://ga4gh.org/#/
https://genomicsandhealth.org/
http://www.commonwl.org/

5.4. Global Alliance for Genomics and Health Data Working Group 68

can be used to specify a set of parameters to control execution of tools. The
writer of a workflow is able to flexibly specify input and output files for the
processes. The execution engine is tasked with moving the files to the correct
location for each step in the workflow according to the specification.

As an option, the tools in the workflow can be encapsulated in a Docker image.
This enables complex workflow including many diverse images. An exemplary
workflow using Docker images from the user guide for CWL [45] is shown in
listing 5.1. This workflow uses the official Java image to compile the file with
the id ‘src’ and marks the files with the suffix .class i.e. the generated class
files as the output files.

Listing 5.1: Workflow in CWL for Java compilation
1cwlVersion: cwl:draft -3
2class: CommandLineTool
3baseCommand: javac
4hints:
5- class: DockerRequirement
6dockerPull: java:7
7baseCommand: javac
8arguments:
9- prefix: "-d"
10valueFrom: $(runtime . outdir)
11inputs:
12- id: src
13type: File
14inputBinding:
15position: 1
16outputs:
17- id: classfile
18type: File
19outputBinding:
20glob: "*. class "

There is a similar language called the Workflow Description Language (WDL)5

in a custom format providing comparable to define workflows. With both
languages complex workflows involving multiple different tools can be described.
They are particularly suited for multi-tool data processing for which no special
tool exists.

5https://github.com/broadinstitute/wdl

https://github.com/broadinstitute/wdl

5.4. Global Alliance for Genomics and Health Data Working Group 69

In software development however it is common to have a specialized build tool
for each language or environment that is able to exploit deep knowledge about
the structure of the code, for example to speed up the compilation and to use
simple configuration. The build tool ember-cli used in the blog example is
such a specialized utility.

When comparing the workflows approach by the GA4GH DWG with the
approach discussed in this thesis it is apparent that the workflows correspond
to utility containers. Both approaches provide reproducibility by uniquely
identifying code and environment for each step in the workflow as well as a
self-documenting task description.

Creating new images from source code is not in the scope of the workflow
approach and there is no indication that is planned to be included in the
future.

6. Conclusion

The main purpose of this study was to find a method to create Docker images
satisfying the idiomaticity and reproducibility criteria, and to compare it with
the methods prevalent in the container community today. A new approach
was proposed that solves the problems discovered in the other models. The
performance was validated using a new software that applies this approach and
a set of examples with varying complexity, and with the automated Docker
image creator Mulled.

The results of the evaluation and the positive results of Mulled validate
the approach with respect to performance and applicability: Images are
created faster, with less network traffic incurred and are smaller than their
counterparts created with legacy approaches. All three factors are important
when considering the introduction of containerization into the software building
and deployment workflow. Great differences in the size and functionality
between compile and runtime environments call for a differentiation in their
containerized counterparts, and this separation is only provided by the Layer
Donning approach.

Mulled will be introduced to the scientific as an Application Note in the near
future. A relevant paper is in preparation. End users can use Mulled today to
create images for a great number of software packages and with the help of a
graphical tool like Kitematik1 these images can be executed on their computers
without having to resort to the command line. Organisations like iPlant2 can
utilitze a Mulled instance to automatically derive Docker images from existing
software repositories without having to write down installation steps for each
package by hand.

The non-linear nature of the workflows described by Involucro control files
make it possible to execute steps in parallel if it is deemed appropriate in an
application. Further work in Involucro is needed to support this requirement.
It is currently out of the scope of Involucro to support any kind of dependency-
tracking which would support automatically determining steps to be executed.

1https://kitematic.com/
2http://www.iplantcollaborative.org/

https://kitematic.com/
http://www.iplantcollaborative.org/

6. Conclusion 71

It is however one of the most frequently asked for features and could increase
the adoption of Involucro as full development system.

A close integration into the Bioconda repository is currently in progress which
will allow having a companion Docker image for each package as soon as it is
admitted into the repository. In the near future, it could be up to the user
or researcher whether to use a package or an equivalent container image to
support their work.

A. Supplement

Supplemental material can be found on GitHub in the repository https://
github.com/thriqon/thesis-supplement. The version of the code used in this
thesis is committed with id 5398f1d34101ebb46544744be2f540f9e349a905, also
available under the tag release signed by the PGP key A6EBEF162E480D7E.

The following materials are available there:

• The Involucro source code

• The evaluation environment

– Testing Engine
– Implementations for all three examples

• The evaluation results

• The Mulled source code

https://github.com/thriqon/thesis-supplement
https://github.com/thriqon/thesis-supplement

References

[1] Christian Collberg, Todd Proebsting, and Alex M Warren. Repeatability
and Benefaction in Computer Systems Research. A Study and a Modest
Proposal. Tech. rep. TR 14-04. University of Arizona, Feb. 27, 2015.
url: http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf.

[2] Carl Boettiger. “An Introduction to Docker for Reproducible Research”.
In: SIGOPS Oper. Syst. Rev. 49.1 (Jan. 2015), pp. 71–79. issn:
0163-5980. doi: 10.1145/2723872.2723882. url:
http://doi.acm.org/10.1145/2723872.2723882.

[3] Jeremy Goecks, Anton Nekrutenko, and James Taylor. “Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences”. In: Genome
Biology 11.8 (2010), pp. 1–13. issn: 1465-6906. doi:
10.1186/gb-2010-11-8-r86. url:
http://dx.doi.org/10.1186/gb-2010-11-8-r86.

[4] Simon Crosby and David Brown. “The Virtualization Reality”. In:
Queue 4.10 (Dec. 2006), pp. 34–41. issn: 1542-7730. doi:
10.1145/1189276.1189289. url:
http://doi.acm.org/10.1145/1189276.1189289.

[5] Daniel Bartholomew. “QEMU: a Multihost, Multitarget Emulator”. In:
Linux Journal 2006.145 (May 2006), p. 3. url:
http://www.ee.ryerson.ca/~courses/coe518/LinuxJournal/elj2006-145-
QEMU.pdf.

[6] Chris Siebenmann. The somewhat surprising history of chroot().
Aug. 28, 2015. url:
https://utcc.utoronto.ca/~cks/space/blog/unix/ChrootHistory (visited
on 02/25/2016).

[7] Paul B. Menage. “Adding generic process containers to the linux
kernel”. In: Proceedings of the Linux Symposium. Vol. 2. Citeseer. 2007,
pp. 45–57.

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf
http://dx.doi.org/10.1145/2723872.2723882
http://doi.acm.org/10.1145/2723872.2723882
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1145/1189276.1189289
http://doi.acm.org/10.1145/1189276.1189289
http://www.ee.ryerson.ca/~courses/coe518/LinuxJournal/elj2006-145-QEMU.pdf
http://www.ee.ryerson.ca/~courses/coe518/LinuxJournal/elj2006-145-QEMU.pdf
https://utcc.utoronto.ca/~cks/space/blog/unix/ChrootHistory

References 74

[8] Peng Liu, Sushil Jajodia, and Catherine D McCollum. “Intrusion
confinement by isolation in information systems”. In: Journal of
Computer Security 8.4 (2000), pp. 243–279.

[9] Yan Wen et al. “A Survey of Virtualization Technologies Focusing on
Untrusted Code Execution”. In: Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2012 Sixth International
Conference on. July 2012, pp. 378–383. doi: 10.1109/IMIS.2012.92.

[10] Wes Felter et al. “An updated performance comparison of virtual
machines and linux containers”. In: IBM Research Report 28 (2014),
p. 32.

[11] Stephen Soltesz et al. “Container-based Operating System
Virtualization: A Scalable, High-performance Alternative to
Hypervisors”. In: SIGOPS Oper. Syst. Rev. 41.3 (Mar. 2007),
pp. 275–287. issn: 0163-5980. doi: 10.1145/1272998.1273025. url:
http://doi.acm.org/10.1145/1272998.1273025.

[12] Paul Menage. CGROUPS. The Linux Foundation. Dec. 3, 2014. url:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/
Documentation/cgroups/cgroups.txt?id=v4.2.

[13] Duncan Hardie. How to Get Started Creating Oracle Solaris Zones in
Oracle Solaris 11. Nov. 2011. url:
http://www.oracle.com/technetwork/articles/servers-storage-
admin/o11-092-s11-zones-intro-524494.html (visited on 04/17/2016).

[14] capabilities(7) - Linux Programmer’s Manual. The Linux man-pages
project. Dec. 5, 2015.

[15] Florian Barth and Matthias Luft. Docker and Security. Mar. 10, 2016.
url: https://www.ernw.de/download/ERNW_Stocard_Docker-
Devops-Security_fbarth-mluft.pdf (visited on 03/15/2016).

[16] P. Goyal et al. CIS Docker 1.6 Benchmark v1.0.0. Tech. rep. Center for
Internet Security, Apr. 2015. url:
https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.100.

[17] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent
Development and Deployment”. In: Linux J. 2014.239 (Mar. 2014). issn:
1075-3583. url: http://dl.acm.org/citation.cfm?id=2600239.2600241.

[18] Anna Gerber. The State of Containers and the Docker Ecosystem: 2015.
O’Reilly Media, Sept. 2015. isbn: 9781491941386.

http://dx.doi.org/10.1109/IMIS.2012.92
http://dx.doi.org/10.1145/1272998.1273025
http://doi.acm.org/10.1145/1272998.1273025
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/cgroups/cgroups.txt?id=v4.2
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/cgroups/cgroups.txt?id=v4.2
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-092-s11-zones-intro-524494.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-092-s11-zones-intro-524494.html
https://www.ernw.de/download/ERNW_Stocard_Docker-Devops-Security_fbarth-mluft.pdf
https://www.ernw.de/download/ERNW_Stocard_Docker-Devops-Security_fbarth-mluft.pdf
https://benchmarks.cisecurity.org/downloads/show-single/index.cfm?file=docker16.100
https://benchmarks.cisecurity.org/downloads/show-single/index.cfm?file=docker16.100
http://dl.acm.org/citation.cfm?id=2600239.2600241

References 75

[19] Paul Biggar. Container Wars. Apr. 13, 2015. url:
http://blog.circleci.com/container-war/ (visited on 03/07/2016).

[20] J. Hawn et al. Docker Image Specification v1.0.0. Tech. rep. Docker,
Inc., June 2015. url:
https://github.com/docker/docker/blob/v1.8.2/image/spec/v1.md.

[21] Alex Polvi. CoreOS is building a container runtime, rkt. Dec. 1, 2014.
url: https://coreos.com/blog/rocket/ (visited on 03/01/2016).

[22] Brandon Philips et al. The App Container Specification. Dec. 9, 2015.
url: https://github.com/appc/spec/tree/v0.7.4 (visited on
03/02/2016).

[23] Michael Crosby et al. Open Container Initiative Charter. July 22, 2015.
url: https://github.com/opencontainers/web/blob/
a6a465bf45f95db5396567b472d85224ac47a236/content/charter.md
(visited on 03/04/2016).

[24] T. Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC 7159 (Proposed Standard). Internet Engineering Task
Force, Mar. 2014. url: http://www.ietf.org/rfc/rfc7159.txt.

[25] B.A. Hipp, C. Wong, and Y.Y. Yeh. Method and system for an overlay
filesystem. US Patent 7,197,516. Mar. 2007. url:
https://www.google.com/patents/US7197516.

[26] Richard Stallman and Contributors. GNU Coding Standards. 2015. url:
https://www.gnu.org/prep/standards/standards.html (visited on
02/04/2016).

[27] F. Mancinelli et al. “Managing the Complexity of Large Free and Open
Source Package-Based Software Distributions”. In: Automated Software
Engineering, 2006. ASE ’06. 21st IEEE/ACM International Conference
on. Sept. 2006, pp. 199–208. doi: 10.1109/ASE.2006.49.

[28] John Hazen. Delivering reliable and trustworthy Metro style apps.
May 17, 2012. url:
https://blogs.msdn.microsoft.com/b8/2012/05/17/delivering-reliable-
and-trustworthy-metro-style-apps/ (visited on 02/09/2016).

[29] Jeff Six. Application Security for the Android Platform. O’Reilly Media,
2011. isbn: 1449322271.

[30] About iOS App Architecture, in App Programming Guide for iOS. 2015.
url: https://developer.apple.com/library/ios/documentation/iPhone/
Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.
html (visited on 02/09/2016).

http://blog.circleci.com/container-war/
https://github.com/docker/docker/blob/v1.8.2/image/spec/v1.md
https://coreos.com/blog/rocket/
https://github.com/appc/spec/tree/v0.7.4
https://github.com/opencontainers/web/blob/a6a465bf45f95db5396567b472d85224ac47a236/content/charter.md
https://github.com/opencontainers/web/blob/a6a465bf45f95db5396567b472d85224ac47a236/content/charter.md
http://www.ietf.org/rfc/rfc7159.txt
https://www.google.com/patents/US7197516
https://www.gnu.org/prep/standards/standards.html
http://dx.doi.org/10.1109/ASE.2006.49
https://blogs.msdn.microsoft.com/b8/2012/05/17/delivering-reliable-and-trustworthy-metro-style-apps/
https://blogs.msdn.microsoft.com/b8/2012/05/17/delivering-reliable-and-trustworthy-metro-style-apps/
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html

References 76

[31] Best practices for writing Dockerfiles. 2016. url:
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-
practices/ (visited on 02/17/2016).

[32] Tianon Gravi and contributors. Dockerfile for golang 1.6, based on
alpine. 2016. url: https://github.com/docker-library/golang/blob/
3cdd85183c0f3f6608588166410d24260cd8cb2f/1.6/alpine/Dockerfile
(visited on 02/22/2016).

[33] Thomas Uhrig. Flatten a Docker container or image. Mar. 31, 2014.
url: http://tuhrig.de/flatten-a-docker-container-or-image/ (visited on
02/22/2016).

[34] Jerome H. Saltzer and Michael D. Schroeder. The Protection of
Information in Computer Systems. 1975.

[35] Justin Cappos et al. “Package management security”. In: University of
Arizona Technical Report (2008), pp. 08–02.

[36] Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner. Over 30% of
Official Images in Docker Hub Contain High Priority Security
Vulnerabilities. May 2015. url:
http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-
WhitePaper.pdf (visited on 02/22/2016).

[37] Brendan Burns et al. “Borg, Omega, and Kubernetes”. In: Queue 14.1
(Jan. 2016), 10:70–10:93. issn: 1542-7730. doi:
10.1145/2898442.2898444. url:
http://doi.acm.org/10.1145/2898442.2898444.

[38] Abhishek Verma et al. “Large-scale cluster management at Google with
Borg”. In: Proceedings of the Tenth European Conference on Computer
Systems. ACM. 2015, p. 18.

[39] Mathias Meyer. “Continuous Integration and Its Tools”. In: Software,
IEEE 31.3 (May 2014), pp. 14–16. issn: 0740-7459. doi:
10.1109/MS.2014.58.

[40] Travis CI Plans. 2016. url: https://travis-ci.com/plans (visited on
02/11/2016).

[41] Chris Bednarski et al. Introduction to Packer. Mar. 12, 2016. url:
https://raw.githubusercontent.com/mitchellh/packer/v0.10.0/website/
source/intro/index.html.md (visited on 03/17/2016).

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://github.com/docker-library/golang/blob/3cdd85183c0f3f6608588166410d24260cd8cb2f/1.6/alpine/Dockerfile
https://github.com/docker-library/golang/blob/3cdd85183c0f3f6608588166410d24260cd8cb2f/1.6/alpine/Dockerfile
http://tuhrig.de/flatten-a-docker-container-or-image/
http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf
http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf
http://dx.doi.org/10.1145/2898442.2898444
http://doi.acm.org/10.1145/2898442.2898444
http://dx.doi.org/10.1109/MS.2014.58
https://travis-ci.com/plans
https://raw.githubusercontent.com/mitchellh/packer/v0.10.0/website/source/intro/index.html.md
https://raw.githubusercontent.com/mitchellh/packer/v0.10.0/website/source/intro/index.html.md

References 77

[42] I. Melia et al. Linux Containers: Why They’re in Your Future and What
Has to Happen First. Tech. rep. C11-732571-00. Cisco/Red Hat, 2014.
url: http://www.cisco.com/c/dam/en/us/solutions/collateral/data-
center-virtualization/openstack-at-cisco/linux-containers-white-paper-
cisco-red-hat.pdf.

[43] Hongli Lai. phusion/holy-build-box. Oct. 5, 2015. url:
https://raw.githubusercontent.com/phusion/holy-build-box/rel-
1.0.0/README.md (visited on 03/17/2016).

[44] Brian O’Connor, Peter Amstutz, and Jeff Gentry. Containers and
Workflows Task Team. url: http://ga4gh.org/#/cwf-team (visited on
04/06/2016).

[45] Peter Amstutz, Nebojša Tijanić, and Contributors. A Gentle
Introduction to the Common Workflow Language. Apr. 5, 2016. url:
https://github.com/common-workflow-language/common-workflow-
language/blob/a549f35bdbe3ad09c758c0fa2571d79ded816f4c/draft-
3/UserGuide.yml (visited on 04/07/2016).

http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
https://raw.githubusercontent.com/phusion/holy-build-box/rel-1.0.0/README.md
https://raw.githubusercontent.com/phusion/holy-build-box/rel-1.0.0/README.md
http://ga4gh.org/#/cwf-team
https://github.com/common-workflow-language/common-workflow-language/blob/a549f35bdbe3ad09c758c0fa2571d79ded816f4c/draft-3/UserGuide.yml
https://github.com/common-workflow-language/common-workflow-language/blob/a549f35bdbe3ad09c758c0fa2571d79ded816f4c/draft-3/UserGuide.yml
https://github.com/common-workflow-language/common-workflow-language/blob/a549f35bdbe3ad09c758c0fa2571d79ded816f4c/draft-3/UserGuide.yml

	Abstract
	Zusamenfassung
	List of Abbreviations
	1 Introduction
	2 Theoretical Foundations
	2.1 Virtualization
	2.1.1 Full Operating System Virtualization
	2.1.2 Kernel based Virtualization
	2.1.3 Intra-Process Virtualizations
	2.1.4 Summary

	2.2 Container Formats and Implementations
	2.2.1 Docker Images
	2.2.2 App Containers
	2.2.3 Open Containers
	2.2.4 Summary

	2.3 Docker Engine
	2.3.1 Layered File System
	2.3.2 Provisioning with Dockerfiles

	3 Building and Delivering Software
	3.1 Introduction
	3.2 Legacy Approaches
	3.2.1 Tarball / Installer
	3.2.2 Package Repository
	3.2.3 App Stores
	3.2.4 Summary

	3.3 Existing Approaches
	3.3.1 Plain Dockerfile
	3.3.2 Squash-And-Load

	3.4 Proposed Approach: Utility Containers plus Layer Donning
	3.4.1 Mathematical Formulation

	3.5 Implementation
	3.5.1 Concepts
	3.5.2 Architecture
	3.5.3 Example

	3.6 Evaluation
	3.6.1 Test programs
	3.6.2 Criteria
	3.6.3 Realisation
	3.6.4 Execution Environment
	3.6.5 Results

	3.7 Discussion
	3.7.1 Idiomaticity
	3.7.2 Reproducibility
	3.7.3 Containers and Package Managers

	3.8 Cluster Deployment

	4 Application: Mulled
	4.1 Architecture
	4.1.1 Determination of build targets
	4.1.2 Choice of Technologies

	4.2 Discussion

	5 Related Work
	5.1 Packer
	5.2 Holy Build Box
	5.3 AppImageKit
	5.4 Global Alliance for Genomics and Health Data Working Group

	6 Conclusion
	A Supplement
	References

