
Provenance-based
computing

A dissertation submitted for the degree of

Doctor of Philosophy

Lucian Carata
Wolfson College

Digital Technology Group
Department of Computer Science and Technology

Copyright © 2016, Lucian Carata

This version is also published online as a technical report and freely available from

http://www.cl.cam.ac.uk/techreports

Bibtex entry:

@phdthesis{carata2016pbc,
title = {Provenance-based computing},
school = {University of Cambridge},
author = {Lucian Carata},
year = {2016},
}

Typeset using LATEX

Figures plotted using matplotlib and ggplot2

Printing version: 57a180e

http://www.cl.cam.ac.uk/techreports

To my parents, who encouraged me to think and explore from an early age;

To Ms Lucia Miron, who first taught me to play with stacks and trees;

To my wife Cristiana, for showing me the other algorithms.

a

Provenance-based computing
Lucian Carata

Summary

Relying on computing systems that become increasingly complex is difficult: with

many factors potentially affecting the result of a computation or its properties,

understanding where problems appear and fixing them is a challenging proposi-

tion. Typically, the process of finding solutions is driven by trial and error or by

experience-based insights.

In this dissertation, I examine the idea of using provenance metadata (the set

of elements that have contributed to the existence of a piece of data, together

with their relationships) instead. I show that considering provenance a primi-

tive of computation enables the exploration of system behaviour, targeting both

retrospective analysis (root cause analysis, performance tuning) and hypothetical

scenarios (what-if questions). In this context, provenance can be used as part of

feedback loops, with a double purpose: building software that is able to adapt for

meeting certain quality and performance targets (semi-automated tuning) and en-

abling human operators to exert high-level runtime control with limited previous

knowledge of a system’s internal architecture.

My contributions towards this goal are threefold: providing low-level mecha-

nisms for meaningful provenance collection considering OS-level resource multi-

plexing, proving that such provenance data can be used in inferences about ap-

plication behaviour and generalising this to a set of primitives necessary for fine-

grained provenance disclosure in a wider context.

To derive such primitives in a bottom-up manner, I first present Resourceful, a

framework that enables capturing OS-level measurements in the context of appli-

cation activities. It is the contextualisation that allows tying the measurements to

provenance in a meaningful way, and I look at a number of use-cases in under-

standing application performance. This also provides a good setup for evaluating

the impact and overheads of fine-grained provenance collection.

I then show that the collected data enables new ways of understanding perfor-

mance variation by attributing it to specific components within a system. The

resulting set of tools, Soroban, gives developers and operation engineers a princi-

pled way of examining the impact of various configuration, OS and virtualization

parameters on application behaviour.

Finally, I consider how this supports the idea that provenance should be disclosed

at application level and discuss why such disclosure is necessary for enabling the

use of collected metadata efficiently and at a granularity which is meaningful in

relation to application semantics.

Declaration

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except where specified in the text. This dissertation

is not substantially the same as any that I have submitted for a degree or diploma

or other qualification at any other university. This dissertation does not exceed the

prescribed limit of 60,000 words.

Lucian Carata

July 5, 2016

Personal publication list

Significant contributions

[Lucian-1] Lucian Carata, Sherif Akoush, Nikilesh Balakrishnan, Thomas Bythe-

way, Ripduman Sohan, Margo Seltzer, and Andy Hopper. “A Primer

on Provenance”. In: Commun. ACM 57.5 (May 2014), pp. 52–60 (cit.

on p. 23).

[Lucian-2] Lucian Carata, Ripduman Sohan, Andrew Rice, and Andy Hopper.

“IPAPI: Designing an Improved Provenance API”. In: Proceedings of

the 5th USENIX Workshop on the Theory and Practice of Provenance.

TaPP ’13. Berkeley, CA, USA, Jan. 2013, 10:1–10:4 (cit. on p. 138).

[Lucian-3] James Snee, Lucian Carata, Oliver R. A. Chick, Ripduman Sohan,

Ramsey M. Faragher, Andrew Rice, and Andy Hopper. “Soroban: At-

tributing Latency in Virtualized Environments”. In: 7th USENIX Work-

shop on Hot Topics in Cloud Computing (HotCloud 15). Santa Clara,

CA: USENIX Association, July 2015 (cit. on pp. 97, 116).

Secondary contributions

[Lucian-S4] Sherif Akoush, Lucian Carata, Ripduman Sohan, and Andy Hopper.

“MrLazy: Lazy Runtime Label Propagation for MapReduce”. In: 6th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud

14). Philadelphia, PA, June 2014.

[Lucian-S5] Oliver RA Chick, Lucian Carata, James Snee, Nikilesh Balakrishnan,

and Ripduman Sohan. “Shadow Kernels: A General Mechanism For

Kernel Specialization in Existing Operating Systems”. In: 6th ACM

SIGOPS Asia-Pacific Workshop on Systems (APSys 15). ACM, 2015

(cit. on p. 59).

Technical reports

[Lucian-TR6] Lucian Carata, Oliver Chick, James Snee, Ripduman Sohan, Andrew

Rice, and Andy Hopper. Resourceful: fine-grained resource account-

ing for explaining service variability. Tech. rep. UCAM-CL-TR-859.

University of Cambridge, Computer Laboratory, Sept. 2014.

Acknowledgements

I would have certainly not finished this thesis if it weren’t for the support (both moral

and practical) of the people who have been around me those four years. I am grateful

for their help and honored to have met them. Good advice is hard to come by, and

I sometimes feel like I received more than my fair share – but then again, such is the

curse of spending your time amongst people smarter than you.

I cannot start without thanking my supervisor, Andy Hopper, who has encouraged

me from day one. Throughout my PhD, I had the feeling of him being the invisible

hand steering me away from dead-ends while pointing in the right direction; not strong

enough for me to feel I’m without free choice or research thought, but there to make

me properly justify my line of enquiry (and realise my foolish ways). Nevertheless, I

always emerged from our meetings feeling better about both myself and the research

I’m doing. Without his constant advice and financial support I’m certain this thesis

would have remained a dream of mine.

I have received considerable help and support from Ripduman Sohan, during our

almost daily interractions. I must sincerely thank him for putting up with me! His

extensive knowledge of the Linux kernel and of system measurement in general have

proven irreplaceble in shaping the results in Chapter 3. More generally, our discussions

have clarified for me what problems are important and worth working on, and have

given me the courage of exploring areas which I hadn’t considered to be my strong

points. The style of debating and generating solutions through numerous group brain-

storm sessions proposed by Rip have refined my ideas around too many topics to count.

Furthermore, his direct feedback regarding possible improvements to the thesis has led

to a significantly better end-result.

Thanks are due to Andrew Rice, who has helped me throughout my first year here

and forced me to read lots of research papers so that I can avoid working on problems

that have already been solved. Robert Harle and Alan Mycroft were the first to read

and evaluate my research plans; their suggestions and doubts have shaped the argu-

ment for computational provenance as is currently presented. Chris Town has given

me an outside perspective on how my work could be applied in other areas of com-

puter science, and discussing the topic with him made my own ideas more focused and

clear. The numerous at-whiteboard discussions I had with Sherif Akoush regarding

designing provenance-enabled software, have certainly influenced the implementations

of the systems presented in this thesis, and I thank him for his openness and insights.

To my examiners, Robert Watson and Paul Watson, who have provided construc-

tive feedback and were genuinely interested in the topics I have presented. The final

version of this thesis is significantly improved due to their advice.

To my Resourceful partners-in-crime, Ollie and James: I felt that contributing to

a common project has definetely made our overall results better, and has allowed us

to support each other when things looked as if they would never work. I’ll surely

remember the nights spent eating takeaway food and working until dawn together with

you guys, it has definitely motivated me to stay focused on getting things done. Having

a debate with Ollie certainly challenges all your opinions about what is novel, well

designed and whether it’s worth doing (as well as what is right, wrong and meaninful

in life). As for James, I’m sure he’ll show the guys at Apple that our approach is The

Right WayTM.

To my office colleagues, Tom and Nikilesh (as part of the Fresco team): I must thank

you for the discussions on possible research and ideas for the future of provenance. Our

brainstorms have certainly helped in shaping how I think about provenance and its role

in computing moving forward. Now, we must let everybody else know as well...

I would also like to thank EPSRC, The Cambridge Computer Laboratory and the

Cambridge Home Scholarship Scheme (CHESS) for funding my research.

a

On a more personal note, I have certainly benefited from the moral support and

understanding of friends and family during my time as a PhD student. I would like to

thank Mariana, without whom I would have never applied to do a PhD in Cambridge

in the first place. Bogdan Roman has always been there for me with good advice on

research and life in general; furthermore, he was offered me plenty of opportunities to

contribute to side-projects whenever work on my PhD seemed too daunting.

To Cristiana, I’m glad to have found you; I thank you for being supportive during

the long-winded process of me writing up: sometimes, I felt you understood me better

than I understood myself - and I can only admit that when all else failed, you have kept

me motivated with your positive energy and optimism.

Last but not least, I want to thank my Mom and Dad, who have always been there

for me with a good word of encouragement - I can only hope they know how much I

appreciate them and value their advice; they have set the example and made me want

to be a wiser person. It remains to be seen if I shall ever succeed in that endeavour.

Contents

1 Introduction 17

2 Background 23

2.1 Provenance system properties . 25

2.1.1 What can it capture? . 26

2.1.2 Integrating provenance into existing workflows 29

2.1.3 Answering questions based on provenance 30

2.1.4 Understanding overheads . 32

2.1.5 Security issues . 34

2.2 Provenance in the context of system research 38

2.3 Computational provenance ties to system research 39

3 Resourceful: Placing kernel measurements in context 45

3.1 System Design . 50

3.2 Implementation . 59

3.2.1 Measurement points . 59

3.2.2 The Resourceful kernel module 60

3.2.3 User space API . 68

3.3 System evaluation . 71

3.3.1 Evaluation goals . 71

3.4 Understanding performance variability 86

3.4.1 Asynchronous resource consumption 86

3.4.2 Latency breakdowns . 88

3.4.3 Conclusions . 94

4 Soroban: A provenance-based attribution framework 97

4.1 Goals, approach and alternatives . 99

4.2 Design and implementation . 102

4.2.1 Measurements and causal graphs 102

4.2.2 Transferring knowledge across causal graphs 106

4.2.3 The lighttpd causal graph . 106

4.2.4 Xen changes . 109

4.2.5 Processing and plotting scripts 110

4.3 Machine learning with provenance data 111

4.3.1 Variable selection for latency attribution 111

4.3.2 Attributing latency - computing ground truth metrics 114

4.3.3 Gaussian processes training . 119

4.4 Evaluation . 120

4.4.1 Setup . 120

4.4.2 Training: the case of two hypervisor schedulers 121

4.4.3 Ground truth blame: iterated quantile-to-quantile 122

4.4.4 The regression model . 127

4.4.5 Attributing latency to Xen . 127

4.5 Limitations of discussed methods . 130

4.6 Conclusions . 133

5 Conclusion and research directions 135

5.1 General provenance APIs . 138

5.2 Other directions and applications for computational provenance 143

5.3 Directions and applications for data provenance 144

5.4 Provenance research in other areas . 147

Bibliography 149

Glossary

DevOps Discipline integrating the responsibilities of system administration and oper-

ation with the ones of traditional software development in order to ensure both

quality control and speed in deploying changes to applications and services. 43,

119, 120

eBPF Extended Berkeley Packet Filters: an instruction set available in user-space for

defining safe blocks of code that are to be executed at various points in the ker-

nel; also, the kernel infrastructure that is used to manage and execute such code

blocks (filters). 56

HPC High Performance Computing - normally used in the context of clusters dedi-

cated for running numerical simulations (in science fields, engineering, military),

requiring a high degree of parallelism. 51

IOPS Input/Output Operations Per Second: a common performance measurement

used to benchmark storage devices. It refers to the number of input/output op-

erations that the device can process within a second. Usually part of the SLO.

90

IoT Internet of Things, the extension of computation and networking intro everyday

physical objects such as devices, vehicles, accessories and clothing or buildings.

Typically, achieved through the addition of embedded electronics and sensors

supported by software services that enable those objects to collect and exchange

data. 39

SLA Service Level Agreement: an agreement between a service provider and a client,

regarding the quality and properties that the service must meet. Some charac-

teristics that can be part of an SLA are uptime, reliability (mean time between

failures), guaranteed bandwidth, etc. 90

SLO Service Level Objective (also, Service Level Target): refers to the part of the SLA

that can be measured by both parties involved, in order to determine whether the

SLA is met or not. This provides a way of avoiding disputes based on misunder-

standing, between the service provider and its clients. 15

“In the beginning there was nothing, which exploded.”

— Terry Pratchett, Lords and Ladies

1
Introduction

WHEN ASSESSING THE QUALITY or validity of a piece of data, humans are not consid-

ering it in isolation. Instead, we instinctively examine the context in which it appears,

try to determine its original sources or review the process through which it was created.

However, going over those stages for digital data is not straightforward: the results of

a computation might have been derived from numerous sources and by applying com-

plex successive transformations, possibly over long periods of time and across different

computers.

As the quantity of data that contributes to a particular result increases, it becomes

harder to keep track of how different sources and transformations are related to the

final result. Without automated mechanisms for making sense of the history of such

results, we are constrained in our ability to answer important questions about them,

such as: what were the underlying assumptions on which the result is based? under

what conditions does it remain valid? why does / doesn’t the data contain particular

values? what other results were derived from the same data sources?

The metadata that needs to be systematically captured in order to answer those (or

similar) questions is called provenance1 and refers to a graph describing the relation-

ships between all the elements (sources, processing steps, contextual information and

dependencies) that contributed to the existence or to the properties of a piece of data.

A number of use cases are representative for the practical use of provenance data.

1or lineage; we will consider the two terms equivalent in this thesis. Some authors have historically
made a distinction between provenance (referring only to original sources) and lineage (referring to the
derivation history for a data product) [21]

17

The current thesis focuses on using it to explain observed behaviour across the soft-

ware stack (explaining performance degradation, errors and attributing the usage of

resources to different components in a complex system). However, in order to un-

derstand why a provenance-based approach offers new insights towards solving such

issues, it is useful first to consider a wider context:

Where does data come from?

Consider the need to understand the conditions, parameters or assumptions behind a

given result; in other words, being able to point at a piece of data (research result,

anomaly in a system trace or a value in a published report) and ask: where did it come

from? Answering this question would be useful for any experiments involving digital

data, such as “in silico” experiments in biology, other types of numerical simulation or

system evaluations in computer science.

The provenance for each run of such experiments contains the links between re-

sults and corresponding starting conditions or configuration parameters. This becomes

important especially when considering future usage of data, with early results being

used as the basis of further experiments. Manually tracking all the parameters from

a final result through intermediary stages and to original sources is burdensome and

error-prone. When considering systems research and the goals of this thesis, an added

difficulty is the interaction between various components that contribute to an observed

value (e.g. latency), and the nature of such contributions: could provenance be used in

identifying the primary tunable parameters that control the system’s behaviour?

Of course, systems researchers are not the only ones requiring this type of tracking.

The same techniques could be used to help people in the business or financial sectors,

for example in figuring out the set of assumptions behind the statistics reported to a

board of directors, or in determining what mortgages were part of a traded security.

Knowing where a piece of data comes from can also be helpful in complex decision-

supporting scenarios: If a (semi-)automated algorithm provides answers or computes

results which are then used to take decisions that could affect humans, provenance

offers ways of both explaining what the algorithm did, understanding why errors might

have occurred and it could provide the mechanisms for correcting or isolating those

errors.

To find concrete examples, we should look at algorithms used to compute credit

scores or insurance costs by integrating data from numerous sources, or at adaptive

machine learning algorithms controlling self-driving cars. Normal humans interacting

with such algorithms will have a very superficial understanding of their internal opera-

tion (much less so than a researcher running an experiment). Therefore, making those

algorithms record provenance will add significant value in being able to explain their

outputs. Establishing feedback loops by feeding the provenance of outputs as an input

18

to further processing means that the algorithms themselves can adapt and automati-

cally try to isolate errors. Alternatively, the provenance feedback loop channel could

be used to retain a form of human control over such systems while not compromising

their automated nature.

Who is using this data?

Instead of tracking a result back to its sources, we can capture provenance to un-

derstand where that result has been subsequently used or to find out what data was

further derived from it. Some existing domain-specific mechanisms already implement

very coarse-grained variants of such tracking: for example, the recording of citations

for a given article or various web pingback mechanisms.

However, provenance would significantly increase the usefulness of such data by

making similar queries available at a much finer granularity.

A company might want to identify all the internal uses of a certain piece of code in

order to respect licensing agreements or for keeping track of code still using deprecat-

ed/unsafe functions that need to be removed. The general security scenario of having

to identify non-obvious attempts of leaking sensitive data is also within scope: Take

an attacker who tries to hide in the noise and not trigger network security monitor-

ing solutions while exfiltrating data. A possible strategy would be splitting a file into

n small pieces and sending them from multiple servers in a network to various cloud

VMs under the attacker’s control, over a long period of time (months or years). Here,

provenance could help by identifying where data from the sensitive file ended up (in

the n pieces sent over the network) and what techniques were used by the attacker in

doing so.

Using similar mechanisms, end users should be able to track what personal infor-

mation is used by a mobile application and determine whether it is only displayed

locally or sent over the network to a third party. However, this also raises data access

enforcement questions which will need to be clarified: if systems are designed to allow

individuals to strongly enforce constraints on what and how personal information is

used by third parties using provenance, then the same primitives will enable the imple-

mentation of strong DRM schemes (the third parties could do the same with the data

they make accessible to the user). In turn, those might limit the ability of users to

use legally purchased digital data across different devices (for example). However, this

symmetry does not necessarily exist if what end users require is just a proof that data

was used for allowed purposes, without gaining access to its full provenance.

The same use case covers the general propagation of erroneous results, when we

need to understand what pieces of data have been invalidated by the discovery of an

error and what re-computations need to take place for updating derived results.

19

How was it obtained?

Provenance can also be used to get a better understanding of the actual process through

which different pieces of input data are transformed into outputs. This is important

in situations where computer engineers or system administrators need to debug the

problems arising when running complex software stacks.

Understanding such issues becomes feasible because, when it is possible to differen-

tiate between a correct and an erroneous system output, comparing their provenance

will point to a list of potential root causes of the error. In more complex scenarios, the

issues might not be directly linked to particular outputs but to an (undesired) change

in behaviour. Tracking system intrusions or explaining why the response tail latency

has increased by 20% for a server are good examples. In those cases, grouping outputs

with similar provenance could be used for identifying normal versus abnormal system

behaviour and for explaining the differences between the two. Such problems are the

focus of the current thesis, and I refer to the type of provenance collected to solve them

as computational provenance (provenance referring to properties of computations such

as performance or the appearance of errors).

Another important application of being able to examine the process through which

particular results were obtained is in enforcing policies that those outputs should fol-

low. Taking the example of some Volkswagen cars having algorithms that detect test

conditions and adjusting system parameters as to fall into admissible emission regimes:

one can envision tools that examine the provenance graph of the test result, which

will include the provenance of any car-specific parameters during the test, to deter-

mine whether the engine configuration is significantly different from configurations

normally used when driving the car. This would of course require some form of manu-

facturer transparency in regards to the algorithms used to decide upon various system

parameters. However, such forms of transparency can be imposed by regulations and

standards compliance requirements.

Solving the problems highlighted by those use-cases is required if we aim for the

ability to deal with even more complex situations. Those remain beyond the scope of

the work described in this thesis, but are important in terms of the bigger picture: as

sensors become pervasive and machine learning algorithms get involved in optimising

our digital infrastructure, non-experts will still want to feel confident and in control of

the underlying computing systems.

The management of smart homes and self-driving cars are two examples of this.

What “knobs” will be available to human operators for providing corrective inputs?

For example, in the case of driverless cars, a human could be asked to provide cor-

rective inputs like, “too aggressive” or “wrong lane switch”. However, understanding

why such things happened in the first place will require some form of provenance.

20

Provenance systems

Together, the three use cases provide an overview of the ideal provenance application

space, but do not describe the technical details involved in making those applications

possible. To realise each scenario in practice, one or more provenance systems need to

be integrated into the data processing workflow, becoming responsible for capturing

provenance, propagating it between related components and making it accessible to

user queries or automated analysis tools.

In many ways, people might already be running a very specialised version of such a

system today: all auditing, tracing frameworks or change tracking solutions will collect

some form of provenance, even though they might not identify it as such. The advan-

tage of thinking about provenance as a standalone concept is the ability to use this

metadata in a principled way, allowing result verifiability and complex historic queries

irrespective of the underlying mechanisms used to collect it and across applications or

software stacks. This implies that provenance data would become something you can

perform computations on.

Research Thesis

A complex heterogeneous system that is provenance aware can detect and take auto-

mated steps to recover from situations in which it produces results deviating from a

standard (of performance, correctness, security), using provenance metadata to evalu-

ate and understand its current state.

In supporting the thesis I will design, implement and evaluate a framework allowing

the capture of provenance-enhanced system measurements, showing how those can be

used in analysis for understanding application performance properties.

Outlook and contributions

The goal is to make a strong case for considering provenance a fundamental primi-

tive of computation, that enables the exploration of system behaviour targeting both

retrospective analysis (root cause analysis, performance tuning) and hypothetical sce-

narios (asking what-if questions). In this context, provenance can be used as part of

feedback loops, with a double purpose: building software that is able to adapt for

meeting certain quality and performance targets (semi-automated tuning) and enabling

human operators to exert high-level runtime control with limited previous knowledge

of a system’s internal architecture.

My contributions towards the stated goal are threefold: (i) providing low-level

mechanisms for provenance collection taking into account OS-level resource multiplex-

ing, (ii) proving that this provenance data can be used in inferences about application

21

behaviour by attributing resource consumption to relevant software-level activities and

(iii) showing how the same data, together with a causal model describing assumed

relationships between system components, can be used in determining metrics for hy-

pothetical scenarios (“what-if” questions).

In order to build the primitives required for such use cases in a bottom-up manner,

I first describe the traditional provenance landscape (Chapter 2), while also introduc-

ing new terms and concepts (computational provenance, the n-by-m problem). The

systematic discussion of issues surrounding provenance systems is new and considers

topics in capture (data granularity, layering, versioning), querying (classifying types of

query languages for provenance) as well as overheads and security models. The sec-

ond part of the background chapter ties the provenance world with current systems

research in tracing, instrumentation (as low-level mechanisms), profiling, performance

measurement (as specialised applications) and root cause analysis in the context of

complex/virtualized systems (as analysis targets). These are relevant in contrasting

non-provenance based ideas to the tools and methodologies developed in the following

chapters.

The key lacking aspect is identified as the difficulty of understanding how global

system measurements are related to activities performed by running applications. An-

swering this problem, in Chapter 3 I describe Resourceful, a framework that enables

capturing OS-level measurements in the context of application activities. It is the con-

textualisation that allows tying the measurements as part of provenance in a meaning-

ful way, and I look at a number of use-cases in understanding application performance.

This provides a good setup for evaluating the impact and overheads of fine-grained

provenance collection.

I then show that the collected data enables new ways of understanding performance

variation by attributing it to specific components within a system (both on bare metal

and under virtualization). The resulting set of tools, Soroban (Chapter 4), gives devel-

opers and operation engineers a principled way of examining the impact of various con-

figuration, OS and virtualization parameters on application behaviour. An approach is

described for undertaking performance evaluation, considering the causality relation-

ships that exist between different captured metrics, as estimated by a domain expert.

The end result can give answers to questions such as: what would the latency of this

HTTP request have been, had it been serviced by a server running on bare metal instead

of inside a virtualized environment (with contention from other VMs)?

The thesis concludes with an in-depth look at future directions for provenance

in systems research (Chapter 5), relating to improvements that can be made to Re-

sourceful and Soroban, as well as discussing generalized provenance APIs and tools for

exploring computational provenance results.

22

“Straight ahead of him, nobody can go very far . . . ”

— Antoine de Saint-Exupéry, The Little Prince

2
Background1

HISTORICALLY, provenance systems were the focus of research in the database field,

with the aim of understanding how and when materialized views should be updated in

response to changes in the underlying tables [41]. Because of the well defined relational

model, it has proven possible to both derive precise provenance information from

queries [25] and to develop formalisms which allow its concise representation [64].

This has been further extended in systems such as Trio [146], allowing records to have

an associated uncertainty and being able to propagate it across multiple queries by

using provenance.

In contrast, capturing provenance for applications performing arbitrary computa-

tions (with possible side effects and not restricted to a particular set of valid transfor-

mations) has proven more challenging. Research efforts in this area have focused on

the collection of provenance at particular points in the software stack (by modifying

applications, the runtime environment or the kernel).

Figure 2.1 presents a general timeline of systems and the current chapter discusses

the characteristics of some that are representative for a larger class of solutions in the

design space.

OS level: PASS [100, 102], SPADE [61] and CAMFLOW [111] investigate capturing

provenance by observing application events such as process creation or IO. Those are

then used for inferring dependencies between different pieces of data. Subsequent ver-

1An earlier version of this chapter was published as part of the CACM and ACM Queue articles
[Lucian-1]

23

sions of those systems have also added the ability to integrate with special user space

libraries in order to obtain more information about application behaviour. While low-

level, those tools are concerned with tracking the provenance of data as it is being

processed (the focus is on the history of the data). Unlike them, the work presented in

this thesis deals with the provenance of the computations and transformations applied

to the data (as operations that in themselves have a history and interesting properties).

I define the latter as computational provenance, and in particular will be interested

in making use of the provenance of system measurements as a way of characterising

computation behaviour (performance variation, bottleneck shifting, errors, etc). The

design, implementation and evaluation of such a system, called Resourceful, is dis-

cussed in detail in the following chapters.

Workflows: Vistrails [125] and ZOOM [15] are workflow management systems with

the ability to track provenance for the execution of various workflows and (in case of

Vistrails) for the evolution of the workflows themselves. Such systems are only able to

capture complete provenance if all tasks are defined and executed within or under the

control of the workflow engine.

Application level: Burrito [68] tracks user space events, while also supporting addi-

tional user-provided annotations. SPROV [72] focuses on the security of provenance,

and provides a thin wrapper around the standard C IO library. A newer version is

capable of using provenance captured by other systems, such as PASS. Similarly, SPADE

is able to accept domain-specific provenance from arbitrary sources through reporter

plugins. A recurring theme of this thesis, capturing the context of an application at

the time the OS performs actions on its behalf, turns out to be essential in accurately

attributing resource consumption and making complex inferences about application

performance. The aim for making provenance generally useful should be one of in-

tegrating application-level data with OS-level data, in ways which allow each to be

understood in terms of the other (for example, understanding the kernel-level actions

triggered by an application executing a SQL query or writing a file on an NFS partition).

Big data: Lipstick [5] and RAMP [110] both tackle the problem of tracking prove-

nance in big data scenarios (Map-Reduce jobs).

It is the properties of those systems that are important for understanding what can

be recorded and with what trade-offs, overheads and security implications. The design

choices, together with outstanding issues, are relevant in the context of computational

provenance (the focus of this thesis) and inform the design of the systems and diagnosis

methodologies developed in Chapters 3 and 4.

24

database

workflow

os/systems

standards

’91 ’98 ’05 ’12

LIP

Geolineus

Tioga

Trio

Taverna

Pegasus

Kepler

VisTrails

ZOOM

RAMP

Lipstick

Chimera

PASS

ES3

Sprov

PASS2

Burrito

SPADE

OPM

Provenir PROV

Figure 2.1: A timeline of provenance systems. Databases have been the traditional space for
provenance research. Scientific communities using workflow applications have been the first
to drive the adoption of specialized provenance systems. The OS/systems community has been
pushing for more general systems that would ultimately work irrespective of the computational
environment. Simultaneously, the semantic-web community has been working on standardizing
provenance on the web.

2.1 Provenance system properties

From the perspective of adding provenance-recording abilities to applications, there

are a number of aspects that are important when looking at a provenance system:

• What can it capture? Understanding what metadata is relevant for a series of

data transformations and how the captured information enables and limits the

type of questions that could be asked later. The properties of the system doing

capture have themselves a strong influence on how the data can be used: for

example, the lack of robustness on failure (or even simple event dropping) will

make the collected provenance unusable for security purposes.

• Integration effort: Integrating the system within existing data processing scenar-

ios might involve the need to run on a special OS kernel, make changes to the

runtime environment or link applications with provenance libraries.

• How to answer queries using provenance? The way one might explore and ask

questions based on the captured metadata is important for understanding how

provenance can be used to satisfy the various use cases. When capturing prove-

nance data for a well-defined purpose, it is useful to think of provenance queries

in relation to traditional audit reduction tools: out of all recorded elements, only

a few might be of interest, and both query time and storage savings can be ob-

tained by reducing the data while having in mind its use.

• Understanding overheads: Given one use case, it is often essential to grasp whether

25

the overheads imposed by running the provenance system are acceptable, and to

be able to predict how those overheads will scale as a function of the number of

data dependencies and transformation steps executed. In order to reduce over-

heads, capture systems could be configured to perform various forms of aggre-

gation or be subject to retention policies, either directly at the time of capture or

asynchronously (similar to audit systems [83])

• Security issues: provenance metadata will often require different access controls

from those of the data itself, and it is important to understand the security con-

cerns raised by the use of a particular provenance system.

Based on the above features, I can categorise the properties of the systems picked as

representative, referring back to the motivating use cases as needed. For an orthogonal

view, a per-system summary of properties can be consulted in Table 1.

2.1.1 What can it capture?

The metadata captured by provenance systems typically relates the state of digital en-

tities (files, tables, programs, network connections etc.) at different stages in their life-

time to historic dependencies on other entities or processes. For computational prove-

nance, this means the identification of links between a series of actions (for example

an administrator command triggering a backup job) and their side-effects on particular

applications (i.e. performance of end-user requests). In both cases, two concepts are

fundamental for determining what is captured and how: granularity and layering.

Granularity

The granularity of capture refers to the size of basic primitives that accumulate prove-

nance within a system. Consider a scientist who uses a configuration file storing various

experiment parameters as one of the inputs to a simulation program. Capturing prove-

nance at file granularity will discover the dependency between the simulation program

and the configuration filename. However, the scientist is interested in understanding

the relationships between the simulation results and individual parameters in the file,

which requires capture at sub-file granularity.

The exact meaning of varying granularity from fine to coarse also depends on the

underlying data model of the application. For example, database provenance systems

could store provenance metadata for an entire table, a row within the table, or for each

cell. Provenance capture at the table level is coarse grained and can answer questions

such as “From which other tables has table X derived its data?”. Finer granularities

would determine the relationships between individual rows or cells. Of course, multiple

granularities can be considered at the same time.

26

Systems such as PASS [23], capture provenance by intercepting system calls made by

applications as they execute. At this level, provenance is fine grained and can provide

a detailed image of an application’s execution and dependencies.

However, the noise levels in the collected data are also elevated, making it harder

to extract useful information: Consider a python script that copies one file to another.

When running the script, the python interpreter will first read and load any required

modules from disk. Thus, beyond the dependency on the actual input, the final prove-

nance graph will link the output file to all the python modules used by the interpreter.

This extra data can make it difficult to sift through the provenance graph as an end

user, so generally heuristics are needed to determine which entities are important and

which should be ignored.

Workflow systems such as Vistrails [125] avoid the noise problem and can capture

provenance at any granularity because the processing steps and their dependencies are

explicitly declared by the end user. However, such systems are also inherently limited

to only recording data transformations that were part of the defined workflow.

The n-by-m problem Independent of the system that is chosen, it may not be possi-

ble to accurately determine the dependencies between input and output data. This is

illustrated by the n by m problem, where a program reads N input files and writes M

output files. Even when tracing system calls for individual reads and writes, it’s not

possible to infer which reads affected a particular write, so the provenance graph has

to link each output file to all of the inputs. A system that is unaware of the semantics

of individual data transformations within a process will always present a number of

such false positive relationships. Both PASS and Vistrails have this problem, as they

treat the process or each workflow step as a black box.

The n by m problem can be solved by capturing provenance at even finer granular-

ities. This can be done using binary instrumentation techniques [124] and computing

the provenance of the output as a function of the executed code path and data depen-

dencies. Even if this method requires no modification of the application, the tradeoff is

a significant increase in space and time overheads. A low-overhead alternative would

be to modify the application to explicitly disclose relevant provenance using an API

such as CPL [89], but this requires additional effort from the developer, as further

discussed in section 2.1.2.

Granularity is not the only aspect a user needs to think about when determining

his/her requirements for a provenance system. It is just as important to know in which

layer the provenance collection takes place.

27

Layering

Provenance metadata can be captured at multiple layers in the stack i.e. for the applica-

tion, middleware (runtime/libraries), operating system and/or in hardware. Capturing

provenance across multiple layers provides users with the ability to reason about their

data and processes at different levels of abstraction, with each layer providing a differ-

ent view on the same set of events happening in the system.

For example, consider copying rows between two tables in a spreadsheet and saving

the result. A system collecting provenance at the OS layer will observe a number of

IO operations to/from the file. However, the notions of “tables” and “rows” are only

known to the application, and dependencies amongst them cannot be inferred from

the metadata collected by lower layers. If querying for such relationships is needed,

provenance must be captured in the application layer as well.

Cooperation between layers When requiring provenance capture at multiple layers,

a practitioner could choose a different (specialised) provenance system for each layer

in the stack or a single provenance system that was designed to span capture across

multiple layers.

In both cases, multiple provenance-aware components must cooperate by commu-

nicating different pieces of metadata between layers. This can be achieved either by

adhering to a common provenance data model (such as OPM [99] or PROV-DM [98])

or by providing an universal API and allowing each component to both accept and

generate provenance using it. PASSv2 provides a a disclosed provenance API (DPAPI)

that can be used for this purpose.

However, a second issue exists. Merely collecting metadata at different layers will

result in islands of provenance, unrelated to each other. For an actual mapping of

provenance objects between layers, all entities describing the same application-level

activity/event (i.e user copying some text) must be grouped, for example by tagging

them with an unique identifier.

SPADEv2 for instance uses a multi-source fusion filter (with process id as a tag) to

combine provenance data from multiple sources describing the same event at the same

level of abstraction. When provenance is reported at different levels of abstraction

SPADEv2 uses a cross-layer composition filter that explicitly connects a set of lower-

level operations to a higher-level concept through an isAbstractedBy edge.

The issue of mapping between layers is crucial for computational provenance, as

diagnosing performance variations or application errors relies on inferring the com-

ponents which are to blame, and those might exist at different levels in the software

stack.

28

Data versioning Provenance collection in a given layer typically involves capturing

the chain of events performed by the application on a given piece of data. However,

this does not necessarily require the system to capture multiple versions of data as it is

being transformed. Assume that a user edits a file using a text editor on a PASS enabled

system. The provenance metadata saved by PASS can provide information such as the

program used to edit, number of bytes written to the file etc. But it is not possible

to revert the file back to a previous state or know what the actual data changes were.

In cases where the current contents of the file depend on values in previous versions,

provenance systems need to store versions of data besides processing events in order to

assure verifiability. Because of this, provenance systems such as Burrito [68] not only

track system call level events, but are also running on top of a versioning file system.

Other systems such as Lipstick and RAMP do not require versioning as they run on

top of append-only file systems (all versions are implicitly stored)

Versioning can prove expensive when done for certain layers in the stack. For

example, deciding to version data in the hardware layer (versioning the values or a

register) would create large amounts of data, and should be preceded by an evaluation

of actual benefits. In other cases, versioning can actually improve the collection of

provenance. This is the case in application layer, where a user can undo/redo actions.

Most GUI applications provide this functionality by default and intercepting the undo

stack has been shown to be viable method for automatically inferring provenance [27].

2.1.2 Integrating provenance into existing workflows

The effort needed for integrating a new piece of technology within an existing workflow

is an important practical criteria when choosing a provenance system. This measures

how much the provenance system will intrude on user’s normal working practices, and

a cost-benefit analysis should be made depending on the use case.

Some systems impose larger upfront expenses due to how they collect metadata.

For example, they ask the application to explicitly attest to provenance information,

as is the case with APIs that allow you to supply annotations about the actions being

executed. An example of this is the PASSv2 DPAPI, which offers augmented read and

write calls to which one can pass data indicating the meaning of the read or write call

that is being made. The end result is an increase in the development effort, as code must

be updated to call the new API. All future code changes must also keep the provenance-

related code in sync, and failing to do so will most likely cause invalid metadata to be

captured.

Similarly, systems such as ZOOM or Vistrails ask you to declare the entire work-

flow in advance and can only track dependencies that run on top of their execution

engines. Subsequent work must be done within the same system if dependency links

need to be maintained.

29

As a group, the literature refers to those as disclosed provenance systems, and they

are recognised for their ability to offer improved semantic descriptions of provenance.

However, the trustworthiness of the provenance captured in this way is a concern when

running in untrusted environments. The reasons for this are twofold: because of how

disclosed provenance works, there are no explicit guarantees that what is declared

is actually what is happening (code declaring provenance can get out of sync with

actual program code). More subtly, compromised applications can be made to perform

different operations after they have called a function disclosing provenance: as long as

an attacker is aware that provenance is being recorded, he can prevent the process from

exposing his actions. This means that both the original developers and the running

application need to be trusted if the resulting provenance is to be relied on. A detailed

discussion on the ways an attacker could circumvent the provenance capture system is

done by Balakrishnan [7].

In terms of computational provenance, the highest risk is presented by shared en-

vironments (such as VMs collocated on the same physical machine). There, gathering

detailed measurements about kernel and hypervisor activities could reduce the pri-

vacy of workloads running concurrently (mechanisms such as workload fingerprinting

could be employed to detect and classify neighbour workloads). As with other types

of provenance, this means that the resulting measurements should have separate au-

thorization controls when compared to data normally produced by applications. This

has the potential of adding yet another burden in terms of integration and need of

institution/company policies.

Other provenance systems aim to reduce the overhead imposed on the user. These

tend to take a different approach by observing the users’ applications, recording infor-

mation about how these applications interact with each other and the rest of the OS

and inferring provenance based on it. They are often referred to as observed prove-

nance systems. Systems such as PASS that intercept system calls made by a program or

others such as SPADE that can hook into the audit sub-system in the Linux kernel to

observe the program’s actions are examples of this type of system. They tend to have

the lowest intrusiveness. Often once the system is installed a user can proceed as usual

while having provenance captured for all of the operations they perform. However,

observed provenance systems have their own shortcomings, mostly due to the loss of

semantic information when treating each process as a black box.

2.1.3 Answering questions based on provenance

Using a provenance system is only as useful as the questions that one can answer based

on the collected metadata. However, querying is recognised as a challenging problem:

users often want to query over a broad range of information or they ask questions that

the designers of a provenance system did not anticipate; depending on the granularity

30

of capture, there might be either insufficient data to respond to a query, or the system

might produce so much data that it is difficult explore and understand it. From the

research performed to date in the field, two core paradigms of querying have emerged

and a smaller number of systems use some hybrid of both approaches.

Exploratory

The first major paradigm is exploratory query, which takes advantage of the human

ability to spot patterns. This is important when users don’t have an exact idea of what

metadata they might want to retrieve. Exploratory systems are usually characterised

by presenting the user with a visual representation of the provenance graph and giving

them tools to better explore it without succumbing to information overload. This is a

notably hard problem given that even small provenance graphs can easily contain thou-

sands of nodes. A number of the approaches taken involve either exploring subgraphs

based on contextual filtering (such as InProv [20]) or intelligent clustering methods.

An example of the latter is the PASS Map Orbiter [90] viewer, which implements an

algorithm for dynamically summarising nodes allowing you to expand and contract

areas of detail while browsing.

Directed

The second major paradigm is directed query, an approach more closely linked to the

classic field of database query. It requires the user to express questions about the

provenance of data as queries in a language that is often a specialised extension of SQL

or of a path query language.

The approach is effective if the users know precisely what information they require,

but unlike exploratory methods it does not facilitate discovery of new insights about

the provenance graph.

vtPQL [125] is an example of the directed approach used in the Vistrails system.

The language is designed to enable the user to express provenance queries about three

different aspects of the workflow: the execution log, the abstract workflow represen-

tation and the evolution of the workflow in time. The querying system allows a user

to specify restrictions on all three of these spaces simultaneously. For example restrict-

ing the execution logs to a particular day, highlighting a single workflow module and

choosing a particular version of the workflow. This is helpful as it allows the user to

think in terms of orthogonal querying concerns.

Hybrid

Some systems use a hybrid of the two paradigms. For example the ZOOM system [15]

starts from a user-provided ‘declaration of interest’ to derive a contextually appropriate

31

minimal from of the provenance graph. The heart of the system is an algorithm that

summarises ‘irrelevant’ parts of the graph in ways that maintains their semantics. The

user only needs to provide the list of the modules in the workflow definition that are of

interest, and is then allowed to browse the provenance graph without being distracted

by unimportant pieces of information.

2.1.4 Understanding overheads

As with any computational functionality, provenance capture has associated temporal

and spatial costs. Given that provenance support is likely to be an additional consider-

ation to the primary function of the system, only leveraged when the lineage properties

of the data are required, it is imperative to minimise the overheads.

General purpose provenance systems typically capture either (disclosed) evolutions

of a given workflow or (observed) low-level operations carried out by executing pro-

cesses. Broadly speaking, the time and space overheads for capturing the provenance of

workflow evolution is proportional to both the number of changes in the workflow and

the number of times a workflow is executed. In comparison, the provenance overhead

of capturing an execution log is proportional to the number of recordable operations

executed.

Time overheads In practice the provenance capture cost of workflow systems (and

by extension of other disclosed provenance systems) is minuscule due to their limited

approach to collecting running process information. Both Zoom and Vistrails, for

example, report an approximately 1% increase in execution time [15, 57].

For systems that record process execution, provenance capture costs are a function

of the cost of intercepting and recording observable operations. While intuitively it may

appear that provenance capture at the operation level is prohibitively expensive from

a temporal perspective, reported results show that this is not the case. Kernel based

system call interception mechanisms such as in PASSv2 have a 1–23% overhead on

workloads representative of real-world applications [100, 102]. Similarly SPADEv2,

which utilises kernel auditing infrastructure for provenance capture, reports < 10%

overhead on Windows, Linux and OS X for production Apache runs [61].

For I/O heavy workloads, however, provenance capture may impose larger over-

heads. PASSv2 for example, reports up to 230% overhead on small file benchmarks [102],

but the absolute increase in execution times remains small.

The interception mechanism can also significantly influence provenance capture

overhead in this regard. SPADEv2 for example, supports operation interception via the

kernel auditing mechanisms on OS X while on Windows it requires a file system filter

driver that relays operations to the provenance collector. As a consequence, provenance

enabled Apache builds are 50% slower on Windows but only 5% slower on OS X.

32

The temporal cost of recording operations may also be of potential concern where

provenance is being recorded at an extremely fine-grained level. In such situations it is

common for the cost of provenance capture to equal or exceed the cost of the recorded

operation, leading to slowdowns of over 100%. For example, in the Lipstick system

it is reported that operator-level provenance leads to a slowdown of 2-3x [5] while in

the RAMP system, where provenance is collected at the tuple level by propagating tags

through a Map-Reduce workflow it is common to observe temporal overheads of up

to 75% [110].

Spatial overheads Similar to temporal overheads, the spatial overheads of systems

recording process execution are a function of the amount of data per operation and

the number of recorded operations. In the set of studied systems we note that only half

(SPROV, BURRITO, Lipstick and RAMP) are capable of recording data changes.

While the actual overheads of any workload are sensitive to multiple factors, two

reported data points are illustrative: (i) the general purpose PASSv2 system requires,

on average approximately 20% additional space overhead (as compared to the original

output size) to log all the operations for workloads representative of real-world appli-

cations [102] and (ii) the BURRITO system, running on a real user workload, required

800MB for provenance storage and 2GB for file versions over a two month period [68].

These results lead us to believe storage overheads should not be prohibitive for most

common cases.

In dealing with space overheads, the current thesis presents an API that offers devel-

opers and system administrators the ability to configure the level of aggregation when

capturing computational provenance (Chapter 3), at the expense of not being able to

answer particular queries in the future. This is reasonable as the aggregation level can

be set dynamically, so one can trigger finer-grained capture when detecting signs of

unexpected application behaviour.

Overhead trade-offs Generally speaking, there is a direct relationship between finer

capture granularities and provenance overhead. Some systems leverage this relation-

ship to trade-off granularity of capture for provenance information. SPADEv2, for

example, allows users to capture information at the function call or an application-

defined level at the cost of increased temporal and spatial capture overhead. Similarly,

SPROV allows users to specify modifications in higher-level semantics (e.g. “new sec-

tion added to file”) at the cost of reduced per-operation observability.

In order for users to adopt the most suitable system for their needs it may be useful

for them to predetermine what provenance information will be required to answer

provenance queries and at what granularity this information will be sufficient, mapping

it to the appropriate system.

33

Most systems also delay provenance construction in order to minimise capture over-

heads. PASSv2 for example captures raw operation records, converting them to their

final representation via an asynchronous user-space daemon [102]. SPADEv2 uses sep-

arate provenance collection threads to extract, filter and commit operations to the

provenance log. Other systems delay provenance collection to query time in order to

avoid wasting resources computing provenance that will never be accessed. For exam-

ple, Lipstick only carries out provenance construction when a query is made [5]. This

delayed provenance construction property is present in some workflow systems as well.

ZOOM, for example, will compute some of the provenance at query time, based on the

current user view. Depending on the required cardinality, timeliness, and complexity of

provenance queries, deciding on those trade-offs may considerably improve overheads.

2.1.5 Security issues

Given the amount of information stored by capturing provenance and our desire to rely

on it for making assumptions about pieces of data, as well as for taking semi-automated

decisions with respect to system configuration, the security of provenance data be-

comes a fundamental issue. As a simple example, talking about capturing provenance

data in virtualized environments can only be done while addressing legitimate concerns

on whether that can leak sensitive information across different tennants (virtual ma-

chines) [120]. It is also imperative that provenance data does not leak any information

about the data against which it is collected [24] towards unauthorized users.

Fundamentally, this concern requires provenance data to be managed under sep-

arate access policies than the data it represents. Doing so allows flexibility over the

disclosure of provenance information. For example, one might make provenance inac-

cessible to people outside an organisation, as it would reveal proprietary workflows or

processes. However, the final data result might be freely available to anyone.

Formally, we define the security aspects of provenance as its confidentiality, i.e.,

that only authorised parties can read it and its integrity, i.e., that it cannot be forged

or altered. We consider provenance that has both properties as essential for perform-

ing integrity, validation and consistency checks on data. The third classical notion, of

availability, is a property of the systems collecting and managing the storage of prove-

nance - and should be considered in that context (ensuring replication, failover and

disaster recovery solutions).

Two solutions address the problem of providing secure provenance. The first lever-

ages the concept of reference monitors: McDaniel discusses a secure system for end-

to-end provenance based on the principle of a host based tamper-proof provenance

monitor that mirrors the well known reference monitor concept for the enforcement of

security policies [95]. The presence of the reference monitor means that the security of

provenance collection doesn’t have to rely on the integrity of other system components

34

such as the kernel. While this solution is feasible, no practical implementations have

been developed to-date.

The second is based on provenance chains [59, 72] where processes that generate

provenance must attest to the information added in an encrypted, non-modifiable and

non-repudiable manner. These three properties ensure that all collected provenance has

the confidentiality and integrity properties. In our set of studied systems, SPROV [72] is

a practical implementation of provenance chains. It primarily provides confidentiality

and integrity guarantees for file modifications.

SPROV leverages a number of concepts in cryptography to fulfil the security re-

quirements: confidentiality is maintained by encrypting the metadata describing each

change, record integrity is maintained by checksumming records and attestation is sup-

ported by signing records with the public key of the creating user.

In addition to the key concepts of confidentiality and integrity, SPROV provides

a number of useful features that may be of interest to the practitioner (and a consid-

eration for future secure provenance systems): through the use of of cryptographic

commitments [17], SPROV enables selective exposure of records to third parties; by

employing broadcast encryption [70] SPROV supports selective access control for mul-

tiple auditors without requiring a corresponding proportional increase in the number

of keys. Finally, threshold encryption [128] is supported enabling separation-of-duty

scenarios in which the decryption of records requires participation from at least one

auditor in a number of distinct groups.

SPROV has no mechanism for preventing unauthorised reads, relying instead on

the fact that records are encrypted to prevent unauthorised access. However it is the

only system in our studied set that provides any provenance confidentiality and in-

tegrity guarantees. While all systems acknowledge that the security of provenance is a

fundamental concern the rest rely on existing access control mechanisms such as SQL

grant privileges and file permissions to ensure security.

Table 2.1: Overview of the features and properties of the various provenance systems mentioned in this chapter. Resourceful (RSCFL) is the system I propose in Chapter 3

Type System Cap
tu

re

Gra
nu

lar
ity

Lay
eri

ng

In
ter

-la
ye

r map
pin

gs
Vers

ion
ing

Se
tu

p an
d In

teg
ra

tio
n

Que
ry

Tim
e Ove

rh
ea

d
Sp

ac
e Ove

rh
ea

d
Que

ry
Ove

rh
ea

d
Gra

ph
Con

str
uc

tio
n

Se
cu

rit
y

O
S

/g
en

er
al

PASSv2 observed and

discloseda

syscalls;

user-

defineda

appa, OS,

storage

using

DPAPI or

CPL

events
custom

Linux kernel

exploratory

(PQL)
1% - 23% 20% N/A

background

thread
–

SPADE provenance

providers

file-level,

customb

app, OS,

middle-

ware

fusion and

composition

filters

events
java app,

providers

directed,

limited

exploratory

10%
in the order

of IO ops
N/A

background

thread
–

Arnold
record,

instrumented

replay (R&R)

replay

group

whole

stack

linkage

functions

(pin tools)

versioning

of data /

app state

custom libc,

pin, R&R

directed;

forward/

backward

15% < 2.6Gb/day
0.1x - 3x

runtime

on query

(replay)
–

RSCFLd observed and

disclosed

activity,

kernel

subsys

app, OS,

hypervi-

sor

app tokens –

kernel

module, link

with library

directed,

exploratory

(API)

1% - 20%
user-

configurable

minimal

(zero-copy

API)

app-guided

(API)
–

W
or

kfl
ow

Vistrails
disclosed,

observed (wf

evolution)

data

artifacts

workflow

exec, data
–

events,

data ver-

sioning

user defined

workflows,

annotations

directed,

exploratory

(vtPQL)

1% minimal N/A on demand –

ZOOM disclosed
data

artifacts
application –

events,

append

only fsc

user defined

workflows,

annotations

hybrid 1% minimal seconds on demand –

︸ ︷︷ ︸
Overheads*

Legend: N/A: Data not measured, – : Not studied / Feature not available; Continued on next page

Type System Cap
tu

re

Gra
nu

lar
ity

Lay
eri

ng

In
ter

-la
ye

r map
pin

gs
Vers

ion
ing

Se
tu

p an
d In

teg
ra

tio
n

Que
ry

Tim
e Ove

rh
ea

d
Sp

ac
e Ove

rh
ea

d
Que

ry
Ove

rh
ea

d
Gra

ph
Con

str
uc

tio
n

Se
cu

rit
y

A
pp

lic
at

io
n

le
ve

l Sprov observed libc calls application – events
linking with

library
directed 11%

in the order

of IO ops
N/A –

integrity /

confidential-

ity

Burrito
observed and

disclosed

(annot)

syscalls,

custom

(plugins)

app, OS
using

annotations

events,

version-

ing

systemtap,

plugins, user

annot.

exploratory,

(activity

feed)

12% 2Gb/month N/A – –

CPL disclosed
user-

defined
application manual events

API, code

changes
API N/A N/A N/A synchronous –

B
ig

da
ta

Lipstick disclosed

modules /

operators

/ state

pig work-

flows
–

append

only fsc

augmenting

operators
directed 3x N/A seconds

post-

processing
–

RAMP observed
record

level

map-

reduce

wf

–
append

only fsc

minimal

code changes
directed 20% - 75%

in the order

of nr records
N/A

background

thread
–

︸ ︷︷ ︸
Overheads*

Legend: N/A: Data not measured, – : Not studied / Feature not available

a (PASSv2) using DPAPI [102], or CPL (Core Provenance Library) [89], disclosed provenance APIs
b (SPADE) given custom provenance provider modules
c Data versioning not necessary (all data is kept in append-only file system)
d This is the system presented in Chapter 3 of this thesis, for comparison. Unlike other systems in the table, it focuses on computational provenance (trying to explain how and why application properties

such as performance vary or appear in the first place (errors))
* Typical overheads as described in the evaluation section of the corresponding system; not directly comparable between systems as they were not obtained by running the same workloads

2.2 Provenance in the context of system research

While so far I have described the general landscape as far as current research on prove-

nance is concerned, it is important to also place this in the context of related research

in the systems field, as there is significant overlap with previous research areas, and at

the same time potential for cross-use of ideas and primitives.
versioning
filesystems

The notion of keeping track of the history of data has been explored in versioning

filesystems from the early File-11 [94, p53, p255] (on OpenVMS) to more current ones

such as Tux3 [140]. Filesystems supporting copy-on-write such as ZFS and Btrfs also

allow for the implementation of versions but are not optimised for their continuous

tracking. On the provenance side, filesystems have been explored as a place of trans-

parent metadata capture, in projects such as FiPS [136], ProFS, and more recently in a

distributed filesystem context with FusionFS+SPADE [131]. Naturally, all approaches

target files as the primary entity accumulating provenance and do not deal with the

tracking of actual context in which content transformations happen.
version control

systems
VCS solutions such as git, Mercurial or Subversion [108] gather similar informa-

tion but are fundamentally targeted at direct user interaction for defining versions and

retaining relevant metadata. Some prototypes even exist to turn such solutions into

versioned filesystems (gitfs is one example).

Of course, the most important notion that such systems promote is one of the (file)

version as a central element that humans think about when interacting with computing

systems over time. Provenance systems need to expose similar abstractions in order to

match user assumptions and intuitions.
information flow

tracking
Following the history of data transformations beyond file boundaries, information

flow tracking techniques have a central goal in common with provenance capture sys-

tems: tracking fine-grained metadata on process execution. This is typically achieved

by applying tags to data sources and propagating them depending on the semantics of

executed computations towards data sinks.

Indeed, the ideal provenance capture system would perform detailed information

flow tracking on a multi-core machine, across all executing processes and inside the OS

kernel. The hard part is, of course, in being able to do that precisely (without false-

positive information flows) and with minimal overhead. Taint-tracking techniques [39,

152, 40] which would be applicable in principle as information flow tracking solutions,

have significant overheads – between 2x and 10x depending on workload, whether they

are implemented in hardware, software or need to rely on whole-system emulation.

Furthermore, they suffer from over-tainting as a problem: if data flows are marked

conservatively, there is a real risk of marking a large fraction of objects (sources and

sinks) with the same tag. This may effectively hide the actual information flow in noise

and is directly related to the n-by-m problem in the provenance area.

There have been proposals to reduce the impact of overheads by executing informa-

38

tion flow tracking operations on a separate processor [104], by using a dynamic binary

translator on given code to generate helper threads that perform the actual tracking

and are kept in sync with the main execution. Similar approaches are expected to be

leveraged in the provenance space.
record and replayOf course, in light of reproducibility being seen as an important use-case of prove-

nance, it is feasible to use record and replay techniques directly: instead of tracking ex-

plicit information flow, tracking and recording all the sources of non-determinism in a

program’s execution (inputs, thread interleaving, return values on non-deterministic or

time-dependent functions, etc.). Such solutions exist [150, 149], although their appli-

cation in SMP (Symmetric Multiprocessor) environments is challenging to implement

efficiently due to the inherent multitude of sources of non-deterministic events [49, 19].

It is still possible to optimise for the SMP case by changing the multithreading strategy:

instead of running multiple threads across the available processors, running multiple

time-slices of the same thread (“epochs”), starting from different snapshot states. This

avoids the need of recording the order of reads from memory shared across multiple

threads [142]. Furthermore, when willing to sacrifice accurate replay of data races, it

has been proven that record and replay can be done with overheads that allow always-

on recording [92].

Those approaches can be used in performing record and instrumented replay [73,

46], where the instrumented part is responsible for collecting provenance with reduced

overhead (in case of GUI applications, a significant fraction of the time is spent waiting

for user input, but this can be replayed without delay).
reproducible buildsFinally, the approach of making things reproducible by actively elliminating as

much non-deterministic elements as possible should be mentioned. In this context,

achieving reproducible builds for software artifacts [18] has the stated goal of building

a verifiable (provenance) path from source code to binary code, and allowing multiple

parties to generate the exact same binary (output) by having access to the build defi-

nition (provenance) and the source code (inputs). This can be taken as an example of

modifying systems and practices to allow for easier recording of provenance.

2.3 Computational provenance ties to system research

So far, I have discussed about topics in system research directly related to the prove-

nance field. However, because the current thesis is focused on using provenance ideas

in understanding more about application performance variation under contention and

in allowing resource consumption attributions for debugging and diagnosis, it is im-

portant to also take a look at previous work in this space.

The issue of trying to figure out what went wrong in a complex system or why

certain of its properties are not within expected intervals is not a new one. Numer-

39

ous solutions have been proposed for doing program instrumentation [86, 96], trac-

ing [132, 52], profiling [78, 74] (as mechanisms) and monitoring [1], optimisation [37,

88], anomaly detection [141] and root cause analysis [107] (for providing actionable

results). Approaching the problem from the computational provenance perspective is

not about reinventing such existing tools, but about understanding whether there are

particular (hard) problems that would benefit from a detailed understanding of the re-

lationships between parts of a system (provided by provenance data), in terms of faster

issue identification, possibility of automation, expertise required from the operation

engineers, etc.
binary

instrumentation
At the lowest level, a number of techniques allow for the interposition of functions

in existing binary code, without re-compilation. Such techniques rely on inserting traps

or machine code trampolines calling into user-provided functions that have access to

function arguments and return values. Solutions like DynamoRIO [53] or Pin [87]

provide generic frameworks for applying such instrumentation across architectures.

Likewise, APIs such as Dyninst [147, 118] have been developed to facilitate the pro-

grammatic analysis and modification of other binaries. The mechanisms employed are

essential for building runtime tracing and profiling tools, as they allow the execution

details of arbitrary programs to be captured and analysed.

Sometimes, the manual adjustment of generated interposition code is required to

do instrumentations for a particular purpose optimally. The same general techniques

(such as trampolines [75]) are used, but their actual machine code form is optimised

for minimal architectural impact (minimising cache pollution, number of extra jumps,

loads and stores, etc). To that end, in Chapter 3, I define and evaluate an optimised

call-site interposition primitive for x86 architectures. This was custom-built to serve

the requirements of collecting fine-grained computational provenance measurements

(tens of thousands of active probing sites).
tracing tools Typically built on top of primitives that do binary instrumentation, existing OS-

layer trace capturing tools such as ftrace, strace, LTTng, SystemTap [84] or DTrace [28]

mostly target batch-processing scenarios, where data analysis and event reconciliation

across multiple applications is made in post-processing. Therefore, monitoring tools

or schedulers only have access to aggregated historic data in order to make decisions

about corrective actions or resource allocation strategies. Diagnosing issues starting

from the same data will require human insights about where the problem lies and what

probing points need to be activated. This allows for the development of tools focused

on dealing with particular known issues, but leaves open the problem of figuring out

similar corrective strategies in the general case. This is precisely the case for both

DTrace and SystemTap, which require programmers to write small scripts in a C-like

language (called D2 in the case of DTrace), defining what parts of the OS or of applica-

2This is not the same language as https://dlang.org/

40

https://dlang.org/

tions should be traced using runtime code patching and what data should be collected.

To this end, initiatives such as DTraceToolkit release lists of community-maintained

scripts aimed at investigating various problems (detecting I/O subsystem, networking

or scheduler issues, etc).
distributed tracing

On the side of distributed systems, increased complexity has required tracing sys-

tems such as XTrace [55] or Dapper [132] to introduce IDs that are propagated to link

various parts of a distributed trace. Under my definition, those would be considered

forms of computational provenance. The system proposed in this thesis, Resourceful,

takes a similar approach even on a local host by introducing the notion of activity

tokens. They are used for mapping fine-grained OS component measurements to indi-

vidual application activities.

Another example, Fay [52] proposes a vertically-integrated approach, dealing with

the collection, processing and analysis of execution traces. Its most powerful character-

istic is the ability of executing SQL-like queries over such traces, considering predicates

that may include references to data on multiple machines in a cluster. In that sense, it

allows developers and operation engineers to investigate almost any aspect of a sys-

tem and provides efficient mechanisms for transporting trace data across machines and

querying it. However, its use in diagnosis is limited by what the users already know

about a system: debugging a problem with Fay remains an iterative process based on

insights about why the system behaves differently. This should be compared with the

ideal of a guided or even fully automatic diagnosis.
performance analysis

Doing the performance analysis of a system can either rely on simulation (using a

mathematical model like the ones described by queueing theory [121, 13] or used in

system modelling [80, 145]), on actual measurements using one of the methods and

tools described above or on a combination of the two. The advantage of mathemat-

ical models lies in their predictive power: as long as the model is accurate, advanced

types of root-cause analysis and bottleneck identification strategies can be employed

for optimising the modelled system. Of course, the difficulty is exactly in maintaining

accurate models for complex, loosely coupled, systems.

CloudScope [34] is a representative example: The strategy employed aims to deter-

mine the interaction effects between different workloads in a system, based on Markov

chains that model the sharing of resources. This works well for applications in which

data processing closely follows well known queueing strategies (FIFO, LIFO, Proces-

sor Sharing). However, it fails for most applications based on event loops, as complex

interactions between elements in the same queue are poorly modelled.

On the other hand, making inferences based solely on measured data requires sig-

nificant expertise in diagnosing performance problems and an in-depth understanding

of system behaviour under given workloads. More typically, the expertise of others

is used through diagnosis recipes or methods (such as the USE method [65]). Alter-

41

natively, generic mathematical models can be applied and their parameters tuned to

better reflect measured values [67]. Models themselves can also be inferred/learned

from measurements. In Chapter 4, I propose a hybrid approach, where it is sufficient

for experts to model the relationships that exist between measurements, at a coarse

grained level, for being able to perform advanced analysis and prediction.

In cases where there are natural constraints imposed on a system’s execution (for

example, all applications executing their tasks through the use of a given RPC library

or runtime), performance analysis can be conducted through instrumentation that de-

termines the critical execution paths [54]. An operation (computation stage, function

call) is defined to be part of a critical path for a given application if by reducing or

optimising its execution time one would also reduce the overall runtime of the applica-

tion. The same strategy can be applied, for example, to web services that are defined

as workflows (in a language such as BPEL), by instrumenting the workflow execution

engine. There is prior work [91] predicting performance bounds on the response times

and throughputs of those services based on the workflow structure.

The aim of computational provenance-based methods developed in this thesis is

to allow similar inferences on any set of services, not necessarily constrained to pre-

defined interactions. I also hypothesise that it is essential to enable questions of hy-

pothetical scenarios: taking existing application measurements and asking a diagnosis

system to infer how certain parameters would look under a different set of initial condi-

tions (configuration parameters, component latencies or throughputs, network delays,

etc). The first steps towards this goal (under a set of simplifying assumptions) have been

taken by Ostrovsky [107], but a more rigorous methodology is required (I explore this

in Chapter 4).

In the area of automated tools for understanding system performance, Magpie [9]

stands out as one of the most complete solutions. Magpie considers a high level activity

(such as processing data for a request across multiple machines) and identifies instances

of it from a set of system traces and measurements based on a user-provided schema.

This schema of events describes the different stages through which the activity passes,

but needs to be provided as user input (and is thus fixed). Combined with the fact that

merging various traces in order to reconcile events across OS boundaries is done as a

post-processing step, this limits the use cases in which the toolchain can be used. The

proposed targeted areas are workload characterisation and system modelling.
virtualization

It is even more challenging to do performance analysis in virtualized environments [139]

and to attribute performance variation to the components that are responsible for it.

Work has been done in characterising the performance isolation properties of vari-

ous virtualization solutions [93] ans well as on enforcing them [69]. Research on the

impact of individual virtualization components such as the scheduler [35] or IO sub-

system [116] have been considered before. In Chapter 4, I will approach this issue from

42

a different perspective that shows the value of computational provenance: can one de-

termine how much are individual application activities (i.e. servicing a http request)

slowed down by virtualization and contention in cloud environments?
performance
interference

Virtualization adds more opportunities of performance interference through the co-

localisation of multiple VMs or containers. Interference can also occur locally between

applications contending for the same resources (CPU, caches, memory, I/O). Interfer-

ence is one of the behaviours that is challenging both to model and measure [143],

being an active topic of research. Previous work has looked at interference happen-

ing in virtualized environments [79, 105], caused by hypervisor scheduling [151], by

network contention [117] or storage I/O [30]. It is of course hoped that identifying

interference would lead to systems that are aware of it and adapt their scheduling (of

CPU tasks, network access or block I/O) accordingly. However, it’s worth noting that

such adaptive models are yet even harder to model, debug and reason about in terms

of performance. In this thesis, I am tangentially describing interference problems, from

a different perspective: can changes in the performance of fine-grained activities (i.e

increase in latency for a web request) be attributed to particular components in the

system? When attribution is exact, the causes of slowdowns could be concurrent ap-

plications contending for the same resources and causing interference.
root cause analysisIn that sense, interference sometimes presents itself as a problem solvable through

root cause analysis [106]. However, root cause identification is a more general prob-

lem, also looking at determining causes of errors, failure and incorrect behaviour be-

sides performance degradation. This means that in general the ”root causes“ can also

point to problematic configurations or inputs. X-ray [6] for example looks at estimat-

ing the cost induced by certain configuration values on the execution of basic applica-

tion blocks. The mechanism proposed (based on information flow tracking and binary

instrumentation) is also able to explain the differences observed between the execution

of two similar activities.

Lower overhead solutions are possible for diagnosing the root cause of performance

variations in communicating services [2, 107]. Similarly, bottleneck identification algo-

rithms have been proposed as primitives for identifying root causes for services running

in the cloud [77]. The approach developed in Chapter 4 complements those, enabling

the construction of predictive models rather than just the diagnosis of existing situa-

tions.

43

44

“Any fool can know. The point is to understand.”

— Albert Einstein

3
Resourceful: Placing kernel

measurements in context

AS COMPUTER SYSTEMS increase in complexity, it becomes harder to understand and

control their behaviour in terms of performance, resource consumption, failure modes

or response to changes in configuration options. To take an example, we can look at

the software running on the current infrastructure of large Internet companies such as

Google, Microsoft or Amazon. In order to respond quickly and reliably to high vol-

umes of client queries, their services are built as multi-tier architectures, with each tier

(e.g front end, caching, application, database, storage backend) being separately provi-

sioned, replicated and/or sharded. The processes implementing each tier’s functionality

are then typically run inside virtualized environments (either containers or VMs).

Cloud computing services are making the building-blocks of such scalable archi-

tectures widely available. The expansion of mobile services and ultimately IoT will

further drive the adoption of similar distributed and virtualized architectures across

the industry, with the additional disadvantage of not having a single entity to manage

the end-to-end operation of services. For example, this raises the question of how end

clients can depend on services provided by companies which in turn use a chain of

other providers for things like compute power, storage, data analytics, configuration

management, etc.

Because of the large number of moving parts and configuration possibilities, it will

no longer be sufficient to monitor systems and provide alerts when certain metrics hint

at anomalous or suboptimal behaviour. Without in-depth knowledge of how every part

45

of the system works, as well as knowledge of the overlapping workloads running on

the same physical servers in a shared infrastructure, it will become challenging to return

the system to a working state after failure and even to understand what components

or service providers are to blame. However, it is preferable that such knowledge is

not required from the people operating those services, but instead held by automated

systems.

The work presented in this chapter provides primitives for dealing with such is-

sues, when considering data about the behaviour and properties of systems at different

points in the software stack. By capturing the context of every measurement made,

as well as the relationships between various metrics, the proposed solution targets the

ability to trace problems back to the components that have triggered them. Seen from a

high-level perspective, this is a type of provenance that deals with capturing the various

factors affecting the properties of final outputs (e.g. latency, number of errors, depen-

dence on configuration parameters), in a way that allows explanation and attribution

(Note 3.1).

The starting hypothesis is that by capturing this provenance data, a digital assistant

can be built to help people understand where things have gone wrong in a complex

system, reducing the amount of in-depth knowledge needed for taking corrective steps

as well as reducing the time-to-solution. In an ideal (and distant) world, such an assis-

tant will simply determine what’s wrong with the system and then autonomously take

corrective actions for keeping it running optimally.

Note 3.1: Provenance vs logging, instrumentation and monitoring

While precisely defining boundaries between terms such as logging, instrumentation or
monitoring is somewhat arbitrary because of their overlapping meanings, I will consider
them as follows:

logging: The action of recording data about the execution, internal state or characteristics
of a process. A restricted view would consider logging as only related to actionable

pieces of informationa (e.g “database connection failure” or “indexing complete”).

instrumentation: Pieces of code responsible for capturing (measuring) the state of a pro-
cess or its performance at a given point in time.

monitoring: The use of historic measurements about the state and performance of a sys-
tem for assuring its continuous operation within acceptable parameters.

Distinguishing between provenance data and what is normally obtained from logging
and performance measurement tasks is a matter of perspective: the latter are typically
obtained in a general setting and aggregated (measuring performance parameters for a
system in order to do monitoring), while what I label as provenance ties any obtained
data to particular outputs/activities of the application. To give a simple example, one

46

generally thinks about latency in terms of probability distributions (as is the case when
monitoring). However, having access to provenance data will let a developer analyse the
interrelationships between components that have contributed to the latency of individual
actions (like processing a user request).

Logged data contains information about the steps taken by an application or about
side-effects produced at runtime. Complete provenance should explain how those recorded
events influenced each other and why.

When it is possible to infer context and deduce exact causal relationships from a com-
plete log of high-level events and aggregated measurements, provenance is nothing more
than an index into that set of events, revealing the underlying relationships.

abased on a definition by Peter Bourgon

Some of the complex issues that appear in systems like the ones described above

are difficult to diagnose because of unwanted side-effects and abstractions hiding away

the details of how resources are shared amongst multiple entities: an application will

typically have the illusion that it’s running alone on a physical machine. However, that

is a leaky abstraction: the application’s performance will be affected by concurrent

workloads and virtualization, while some of it’s failures will depend on the failure

modes of shared resources (network timeouts, full buffers, hardware errors). It is also

unclear how local changes (configuration, updates) might affect the system as a whole.

The framework presented in this chapter, Resourceful, provides the primitives for

solving such issues by gathering provenance measurements from precisely the places re-

sponsible for resource allocation and sharing: OS kernels and hypervisors. The overall

design focuses on three significant motivational use-cases:

Understanding performance: In complex web application architectures, answering a

single user request could involve processing taking place on thousands of servers (fan-

out architectures). This means that even relatively rare performance hiccups at the level

of individual servers may translate into poor average/median performance from the per-

spective of the end-user [45]. Note 3.2 explains this behaviour further. However, when

running inside virtualized environments, a trade-off exists between performance con-

sistency and utilisation: higher server utilisation (and a more efficient use of available

resources), also typically increase the likelihood of component-level variability [10].

Solutions to this issue have been proposed, but most of them are focused on hiding

the variability rather than understanding why it is there in the first place. For example,

a well known approach is to issue multiple requests to the system and only return the

answers of the fastest response, while cancelling others [44]. This means that one can

obtain both better performance consistency and server utilisation, but at the expense

of doing needless work (hence, part of the increased server utilisation is artificial: re-

sources were merely spent on processing requests which are then cancelled). Ideally,

we should apply such solutions only after knowing that the observed variations in

47

performance are unavoidable and can’t be fixed through system optimisations.

This leads us to a first guiding design principle: for understanding performance

variability, it is not sufficient to take snapshots of various system metrics, as typical

logging and monitoring tools do; instead, we need to capture enough information to

understand what factors have contributed to the observed values.

For example, on high-latency requests, there is a need of diagnosing causes: What

is different from the low-latency case? Were there unintended interactions between the

server and other co-located applications? Where was most of the time spent? Are there

configuration options which when changed might improve the end result?

Note 3.2: Details on the impact of high fan-out on end-to-end latency

This back-of-the-envelope calculation considers a front-end sending 500 independent re-
quests to identical “leaf” services and collecting the answers in order to compose the re-
sponse. The end-to-end latency is presumed to be the maximum of those latencies.

Let FUi(u) be the cumulative latency distribution functions of individual services,
i = 1..500. Assume that for all services, we measure the 99.9th percentile of the latency
distributions to be 512 ms:

FUi
(512 ms) = P (Ui ≤ 512 ms) = 0.999

We can now compute in what percentile would 512 ms fall for the end-to-end latency
distribution (FZ):

FZ(512 ms) = P (Z ≤ 512 ms) = P (max{Ui} ≤ 512 ms)

= P (U1, U2, ..., U500 ≤ 512 ms)
i.i.d.
=

500∏
i=1

FUi(512 ms)

= 0.999500 = 0.606

Therefore, it turns out that for the end-to-end latency, 1 − FZ(512 ms) = 0.394 (39%)
of the requests are slower than 512 ms.

Comments

The results for the case described above show that if the individual “leaf” services have a
99.9th percentile latency of 512 ms, (1 response in 1000 takes 512 ms or longer), then in
the end-to-end latency distribution, 39% of the responses are expected to take 512 ms or
longer. In other words, even if all the individual services are well within their SLAs, the
performance as experienced by end-users might still be unacceptable.

In practice, this means that slow servers/responses, even if rare, are very important
to the overall perceived performance. Any effort spent in improving their latency (even
taken as a non-distributed problem, of improving the local effiency of particular servers)
is worthwhile.

48

Resource consumption: Irrespective of the underlying reasons (mandated policy or

costs), there has been a constant push towards running services in a way which makes

optimal use of the available resources. However, most of the understanding about

what resources are used, from individual servers to whole data centers is obtained by

taking aggregate measurements. Similar to the case of application performance, those

aggregate measurements will allow for coarse-grained accounting but not attribution.

In order to explore the opportunities for optimisation, as well as more precise end-user

cost models, a transition must be made towards fine-grained contextual measurements

which can then be aggregated in multiple ways: per user, per application, per activity

across data center etc. For example, one might want to understand the cost of a client

request, either on a single host or over a distributed system; this implies being able to

aggregate data at sub-process granularity (summing over the calls that were made to

service that request).

This represents a second design principle: make fine-grained measurements and

their customised aggregation possible. This can be achieved by imposing low per-

measurement overheads and by employing in-kernel aggregation configured through

user-space API calls.

The scheduling and availability of resources (queuing, saturation), plays an impor-

tant role in defining cost models, as well as end-to-end performance characteristics.

While Resourceful is currently focused on understanding individual server data, its

design takes into consideration the possibility of integrating the measurements into

data-center scheduling decisions.

Service configuration: As some applications transition from monolithic designs to

ones based on microservices, the importance of having systems where DevOps teams

or end-users can understand the impact of changing various configuration options will

become critical. Two elements related to provenance are very important in this use

case: (i) capturing the local knowledge of how changing configuration options affects

the operation of individual applications and (ii) inferring the behaviour of the system

as a whole based on inter-service dependencies and the use of common resources.

Both microservice and tiered architectures face issues with understanding the full

set of dependencies for a given service, and how the operation of the service is affected

by changes in the configuration of those dependencies, their failures, resource sharing

and saturation.

The resulting analysis should allow asking “what if?” (counterfactual) questions

about the running services. However, such queries should be understood from the start

to have a statistical rather than an exact meaning: the effects of configuration options

that were never explored will still be impossible to determine unless somebody provides

a regression model that can relate their current values to other known configurations.

The idea put forward in this thesis and justified over the next two chapters is that

49

computational provenance constitutes a channel for obtaining in-depth knowledge of

the system state, of its performance and for predicting potential side-effects of changes

in configuration, updates or failure states. The longer-term view is one of using this

data as part of feedback loops in semi-automated diagnosis systems.

Resourceful, as well as the tools built on top of it, take the first steps in that di-

rection, with a focus on offering insights about failures, observed variations in perfor-

mance under various system configurations and resource consumption.

Note 3.3: Resourceful development and contributions

Resourceful was created, from the onset, as a project with contributions from multiple
researchers. Besides myself, both Oliver R.A. Chick and James Snee had significant con-
tributions in the design and implementation of the system. However, the current chapter
focuses on my own contributions. Whenever particular components were developed as
part of joint work, but still need to be presented here in order for other sections to make
sense, a footnote will be present for clarification.

3.1 System Design

Resourceful is designed to give applications full control over the fine-grained measure-

ment and aggregation of the resources they consume. It is able to provide this type

of attribution while also recording data about events happening concurrently, enabling

the exploration of unwanted interference effects between different workloads. This

remains within the realm of computational provenance as it determines the elements

influencing properties of the considered data: the fact that a web request has been

serviced concurrently with 100 others will impact the latency of all of them.

This differs from current monitoring and performance profiling practices: The level

of aggregation for typical monitoring systems is either at the system operations level –

for example, targeting datacenter site reliability engineers looking at server utilisation,

VM scheduling and migration or network traffic – or at application level, where metrics

used by development teams (i.e. latency, errors per second, transaction timeouts) are

collected periodically. In every case, alerts might be triggered if the measured values

exceed certain thresholds for a given amount of time.

However, despite taking place at different levels of granularity andmulti-level analysis
and aggregation

abstraction,

the two sides (dev and ops) of monitoring should not be seen as independent. Instead,

monitoring should be recognised as a cross-cutting concern, where no single view of the

world will fully provide ideal insights/solutions. Application metrics might be outside

acceptable intervals because of various operation-specific conditions (queueing, hyper-

visor contention, network degradation or oversubscription, etc). Developers will thus

need to be aware of performance metrics from the ops-managed hardware while the op-

50

http://orcid.org/0000-0002-6889-8561

eration engineers will need to understand the aggregate metrics of their systems in the

context of what the currently running applications are doing (seeing network and disk

utilisation spike during an indexing operation is different from similar spikes caused

by large user queries). This is why Resourceful chooses to put every measurement

in the context of other measurements and system parameters, enabling a multi-level

exploration of the collected data.

Understanding the context in which a measurement was made is important because

it will highlight queuing and resource contention issues, but alone it can’t explain why

a particular value was observed for any given metric. To provide explanations, we also

need to determine what constitutes the “critical path” for a given high-level application

activity [107]. Such critical paths are defined by considering the various processing or

waiting steps done for completing a high-level action. If reducing the latency of a given

step reduces the latency of the whole action then that particular step is said to be part

of the critical path.

Identifying such paths at a granularity that allows meaningful optimisations is
data per functional
subsystem

challenging: a too fine-grained approach will yield information about details such as

individual kernel operations, upon which a user-space developer can not immediately

act; on the other hand, a too coarse-grained recording will leave the same developer

with too little data about what should be optimised. Resourceful searches for a bal-

ance by presenting the information in terms of application activities and kernel sub-

systems (CPU, Xen, Memory, Network, VFS, Block devices, etc). For example, the

data recorded for one system call would contain total CPU cycles, wall clock time and

memory costs, but these values are further broken down for each functional subsys-

tem touched during that call: total CPU cycles spent in the network subsystem, total

cycles spent in VFS (Virtual File System) and subsystem-specific metrics such as bytes

sent/received, number of retransmissions, IO queue size and disk writes. The exact set

of recorded metrics is configured through an API.

Another element that differentiates Resourceful’s design from current approaches self-monitoringis

its focus on ’live data’. It allows for both self-monitoring and monitoring by third-party

applications, with the measurement results being available for adapting application

behaviour or system scheduling operations on the fly1. This is a critical element for

using such data as part of feedback loops. The approach is feasible only in the context

of fine-grained measurements backed up by an API that allows immediate access to

their values.

In contrast, most high-level interfaces to performance analysis tools (perf, ftrace,

SystemTap) have a batched approach, where measurements are sampled and post-

processed at a later stage. User-level processes typically need to read trace buffers

before they are filled to avoid loosing events, while aggregation is either limited (Sys-

1I am collaborating with the University of Cambridge’s High Performance Computing Service for
implementing such a solution on top of Resourceful

51

temTap) or needs to be done manually.

Resourceful is closer to low-level interfaces such as perf events – that allows pro-

grammatic access to performance counters – or to the getrusage system call, that al-

lows for coarse-grained resource consumption measurements. At the same time, it

provides high-level aggregation primitives that are simple to control and understand,

by introducing the notioncustom in-kernel
aggregation

of activity tokens. Applications use the API to notify the

kernel of changes in the current activity being executed, so that consumed resources

can be attributed accordingly.

Placing this in the context of provenance, the responsibility of disclosing activities

and declaring interest in resource consumption belongs to the application precisely be-

cause the per-token aggregated data is only useful in the context of application seman-

tics. For example a web server defines the set of operations that make up “responding

to a user request”, and is then able to query for resources being consumed during such

activities.

By reporting resource consumption hierarchically aggregated per (token, subsystem),

Resourceful provides a more detailed view of what happens inside the kernel. For ex-

ample, given a socket send() operation, the application can view the breakdown of

latency and answer questions such as: Was most of the time spent in the network

stack? Was the packet delayed by the scheduler moving the task on a different core?

The application can then classify its own service times by comparing requests that have

significantly different performance characteristics.

The basic building block for answering those questions in practice is activity trac-

ing, which I examine more closely next. This provides a justification for the way Re-

sourceful collects measurement data.

Activity tracing

The main obstacle in accurately diagnosing how time is being spent inside an applica-

tion and understanding what needs to be optimised is doing measurements that ignore

hardware, OS and application resource multiplexing.

Such measurements are typically performed by starting and stopping counters (or

reading performance counters) at the beginning and at the end of a high-level operation,

and then computing the delta time (or event count) between the two snapshots. If any

multiplexing took place2, the measurement will attribute a fraction of the observed

value incorrectly [8]. Furthermore, the amount by which the measurement is wrong

increases with the duration of the measurement, as more unaccounted-for multiplexing

takes place (typical for application or OS level measurements). A concrete example of

this follows.
2if the operation is non-trivial, it is more than likely that such multiplexing took place, at some level

(OS kernel, virtualization, hardware), unless specialized configurations are in place (i.e. CPU pinning,
setting interrupt affinity, avoiding event loops)

52

From the perspective of a provenance system, this is an instance of the n-by-m

problem: not being able to distinguish between individual contributions to the mea-

sured values leads to difficulties in precise diagnosis and debugging: while the end

result will still correctly reflect how long it took to perform the operation, it will most

often fail in answering why.

To highlight this issue, Figure 3.1 presents a small time slice of fine-grained mea-

surements taken from the lighttpd web server while processing http requests. Each

timeline (different values on the y axis) represents the work done for a particular server

connection object.

3.15 3.20 3.25 3.30 3.35

time (cycles)

c
o

n
n

e
c
ti
o

n

connect

request start

read header

validate header

handle request

read content

handle response

write header

write content

response end

E

D

C

B

A

Figure 3.1: lighttpd - Event loop request multiplexing

Multiple connections are “active” at a time, and lighttpd multiplexes between

them using an event loop 3. After a response has been sent, the state of the connection

is reset and further client requests can be served using the same underlying object.

In this case, using queuing theory for gaining insights into how the final latency

distribution changes in response to changes in various other request or application pa-

rameters is not straightforward: the processing is done in multiple stages and using a

common queue, with the latency of one request depending on the latency of requests

that arrived after it in the queue. It is therefore expected that M/G/1-PS4 queuing mod-

els, such as the ones used by CloudScope [34], would not be accurate for event-loop

based applications. Resourceful considers an approach based on real-time measure-

3Here, lighttpd is running on an isolated CPU and no OS scheduling takes place: if one would project
all intervals onto a single axis, a continuous colored region would be formed

4Markovian arrivals, Generalized distribution of processing times, with 1 server and a Processor Shar-
ing service policy

53

Figure 3.2: Comparing Resourceful activity measurements (above) with naive request
start/stop performance counter snapshotting (below) in the case of lighttpd. The web server
processes requests in multiple stages (HTTP header parsing, file retrieval, sending response) and
schedules the processing for those stages on a single thread using a simple event loop.

ments instead, on top of which more realistic models can be built.

To better describe the issues encountered with current strategies, assume coarse-

grained latency measurements for the first client requests served by connections C and

D in Figure 3.1, using the counter start/stop strategy: this means we’ll take four counter

snapshots and end up with two intervals (between the start of the black intervals and

the end of the red ones). From the application’s timeline point of view, some intervals

are accounted for multiple times (the parts for which the requests were waiting for

each-other or on other connections) as can be seen in Figure 3.2.

Another way of confirming this is by summing the obtained server-side latencies and

observing that their total time exceeds the actual runtime. If at the same time perfor-

mance counter measurements were taken (even while limiting their scope to the server

process), the counts for serving a particular request will include events that belong to

other requests. In fact, the measure

Ws =
n∑

i=1

lat(i)− process run time

will represent the total waiting time (across all requests) due to user-side multiplex-

ing, with Ws = 0 when no event loop multiplexing takes place (requests are served to

completion before considering other connections). This can be used as a measure of

intra-process contention.

However, aggregate measures like these can’t provide data for comparing the la-

tency of individual connections in order to explain their differences: were they different

because one waited longer for other requests – as is the case of request D (a workload

interference and queuing problem) or did particular stages in their processing took

54

Figure 3.3: lighttpd - latency breakdown highlighting the percentages of work (time spent doing
actual processing) and wait times due to application-side request multiplexing. Each vertical
line represents one request, and is divided into two parts representing the percentages of work
and waiting. The requests are ordered from low server-side latency (on the left) to high server
side latency (on the right). For high latencies, we observe two types of requests: the ones which
wait for a very long time (more than 80% of the service time) and the ones for which the actual
processing took a long time. Not being able to differentiate between the two groups would
make latency analysis difficult.

longer - as is the case of request C (something which must be explained by further

time break-downs). Furthermore, beyond direct comparisons, developers would be in-

terested in identifying different classes of requests in accordance to the characteristics

that most influence their latency.

Such results can only be obtained if fine-grained measurements are taken through-

out the different stages in the lifetime of a request. Figure 3.3 summarises the high level

behaviour of the lighttpd web server as determined from Resourceful measurements.

It looks at the proportion of time spent doing actual work and waiting for resources

or other requests, ordering the requests on the x axis from low (on the left) to high

latencies (towards the right).

From the figure, we can identify 3 interesting areas: for the low-latency requests

on the left, most of the time is spent doing actual work; the proportion of time spent

doing useful work drops quickly with most mid-level latencies (between request 2 000

and 6 000) being dominated by wait times. Reducing those latencies will require altering

the application-level queuing and multiplexing strategy. In the third area (tail latency)

we observe a bigger split between requests with similar final latencies but with different

55

causes for that latency: it is clear that some requests take longer because of application

level multiplexing while others spend unusual amounts of time doing work.

To understand the causes of tail latency, we will have to isolate this last group and

drill down into the finer-grained kernel-level information provided by Resourceful for

determining possible optimisation strategies. Reducing the latency for those requests

will also improve the latency of the other tail-latency group: those were the requests

which have waited for longer because of atypical work done by other requests.

The discussion above justifies our aim for accurately tracking application-level ac-

tivities. With increased interest in event loop-based applications, the described mul-

tiplexing strategies are becoming more common. This is especially true in systems

designed for high performance and scalability, where there is a clear need for under-

standing behaviour beyond what traditional queuing theory models offer.

Resourceful’s design decision in regards to this is to provide API functions that ap-

plications can use to announce whenever they switch from one activity to another. On

starting a new logical activity, the application needs to call rscfl get token, receiving

a new opaque token object. This object needs to be passed to rscfl swap token or

to other resourceful per-system call accounting functions whenever work is being done

for that activity.

While doing this might be trivial in some applications (lighttpd required just under

50 lines of additional code), it is not always convenient or possible to modify the source

code for inserting Resourceful API calls. However, it is possible to use techniques

such as the Linux LD PRELOAD to externally inject function wrappers implementing this

functionality into existing binaries. For example, I have been discussing this for the

case of HPC applications, where Resourceful can hook into the MPI Control hooks

provided by certain closed-source MPI applications for activity monitoring purposes.

It is conceivable that such tasks could be automated through the use of static analysis.

External data: In order to facilitate integration with userspace measurement tools or

monitoring software, Resourceful allows arbitrary application data to be associated

with any token. This can be used to provide further context to kernel-side measure-

ments, by adding application-specific metrics for each activity.

Tracking asynchronous behavior

Of course, not all resources required for completing a given activity are consumed while

the application is active or when it knows to what token they should be attributed to.

This is an effect of operations happening asynchronously, either in the kernel or at

application level. I consider two types of such asynchronous behaviour:

1. resource consumption happening before we know who it should be attributed to:

for example, this happens with resources consumed on the receive path of the

56

TCP stack, before we know to what application is a particular packet addressed

to. A similar situation is encountered in user-space applications using calls such

as epoll: implicitly, those are used to select file descriptors with pending events;

in the case of file descriptors representing socket connections, the application will

not know to which of those should the time spent doing the epoll be attributed

to before that function call returns. Indeed, the time should be attributed to the

connections with pending events returned by the epoll.

2. resource consumption happening after an operation has completed from the per-

spective of an user-space application: this happens whenever buffers or write-

back caches are involved, as some of the operations that can be attributed to an

application activity have delayed effects: in case of a buffered write to disk, how

can one split the cost of doing a flush amongst all the application activities that

had produced the data?

Without measuring amortised, asynchronous costs, existing performance monitoring

tools provide an incomplete representation of system resource consumption. It is cur-

rently very hard to understand how such operations affect concurrently running work-

loads, and it is at least plausible that they might sometimes explain bad interaction

effects or performance degradations.

Resourceful’s design tackles the issue depending on the type of asynchronous be-

haviour. For type 1 (actions happening before we know to whom we should attribute

them), the solution is to provide primitives for merging the resources consumed for a

given token into other tokens: for example, the application will activate a new non-

action-specific token before an epoll call. After the call returns, one can merge the

resources associated with this token into the measurements of other tokens using an

API call (merge acct into).

In regards to doing measurements for type 2 events, we require the ability of track-

ing kernel data structures together with the operations done on them: If an application

writes data to a buffer (for example, a socket writing data into a shared qdisc buffer),

we must be able to identify further operations on that buffer until the data is flushed.

Part of the costs of maintaining and flushing the buffer, together with subsequent op-

erations on the data (i.e code inside the network card driver) can be attributed to the

original writer. Detailed tracking will require the propagation of ID hierarchies in or-

der to identify actions across layers of abstraction (for example an application waiting

on an NFS file write, which in turn waits on data from a TCP connection). At the mo-

ment, Resourceful only deals with the propagation of application-level IDs (abstractly

defined as tokens)

Naturally, dealing with type 2 events is potentially very expensive: it might require

trapping memory accesses to particular data structures. Fortunately, the Linux kernel

is typically organised in a way that encourages maintaining such shared data structures

57

through common functions. In the case of the running example, the kernel will call

the dev queue xmit function to enqueue socket data into the qdisc structure, while the

qdisk restart function will clear it. Tracking those operations using normal probing

is sufficient.

Beyond measurement however, the problem of attributing parts of the resources

consumed asynchronously to the activities that have triggered them is not well defined:

indeed, from case to case developers might need to pick different attribution strategies:

for buffered writes, a simple strategy would be to divide the asynchronous costs pro-

portional to the size of each write. For functions such as epoll and when analysing

latency, it makes sense to attribute the full cost (max) to each of the file descriptors that

are returned: indeed, if we were using epoll to multiplex between multiple requests, its

latency will be added to all of them. As a consequence, the attribution strategy needs

to be decided through a user-provided function.

General architecture

At a high level, Resourceful it is built as a measurement framework with the following

components:

1. Measurement points analysis: this performs a static analysis of the current kernel

binary in order to identify a minimal set of instrumentation probe points and sub-

system boundaries5 (the level at which primary aggregation takes place), guided

by a user-provided configuration;

2. A kernel module responsible for inserting custom, low-overhead measurement

probes into the kernel and activating them when applications request resource

consumption data; those probes contain the code that performs the actual mea-

surements and relates them to each other.

3. A user-space library exposing the API that applications can use to express interest

in the resource consumption of particular system calls and to read the results after

the required information was gathered on the kernel side.

4. Data management/export facilities for applications that link against the library,

in order to perform subsequent analysis. The system presented in Chapter 4,

Soroban, makes use of those facilities for enabling the training of machine learn-

ing models for predicting application performance under different scenarios and

answering what-if questions.

5main contribution by Oliver R.A. Chick : the core insight was using the Linux MAINTAINERS file for
identifying subsystems

58

http://orcid.org/0000-0002-6889-8561

3.2 Implementation

3.2.1 Measurement points6

Knowing what places in the kernel need to be probed in order to obtain meaningful

data from measurements, while at the same time minimising overhead is very impor-

tant, especially as we aim for fine-grained activity tracking. Existing tools such as perf

or ftrace report their data at the granularity of kernel functions. While some of those

are interesting from a user-space perspective (i.e. methods for acquiring locks), having

measurements in relation to low-level kernel functions is at an abstraction level which

can’t be directly mapped to user-space concepts. Trying to obtain full stack traces that

would put those measurements in context, for example by using the ftrace function -

graph tracer, will impose non-negligible overheads while also failing to provide details

about the particular activities that were affected by slow execution, transiently: was

a http server processing request 1 or request 2 when trying to acquire a contended

lock?

This means that the data can not be directly used for optimising applications or

understanding why they failed. Furthermore, the Linux kernel (as of the 3.19 version)

has 28 930 functions. Probing all of them would add significant overhead and would

impact even applications which are not being instrumented, because of the kernel code

being shared amongst all processes.7

Resourceful takes a different approach: it groups multiple low-level functions based

on their purpose: For example, “functions dealing with IPv4 networking”, “functions

dealing with virtual file systems” or “functions dealing with power management”. Such

groupings relate directly to the Linux notion of subsystems. Fortunately, the kernel

keeps an up-to-date list of such subsystems in its MAINTAINERS file, together with the

source files belonging to each subsystem (Listing 3.1)

At build time, a static analysis of the current kernel’s binary is performed, based

on existing debug symbols. It maps addresses in the kernel from where function calls

are made (call sites) to the source file where the function being called is defined. This

information, together with the data in the MAINTAINERS file, is used to determine

whether a particular function call crosses from one subsystem to another (the call site

and the function definition are in separate subsystems). A header file is generated

to contain those subsystem boundary addresses, where measurement probes will be

placed.

6main contribution by Oliver R.A. Chick
7The Shadow kernels paper [Lucian-S5], to which I have contributed as a co-author, presents a possible

solution in this space

59

http://orcid.org/0000-0002-6889-8561

1 NETWORKING [GENERAL]

2 F: net/

3 F: include/net/

4 F: include/linux/in.h

5 F: include/linux/net.h

6 F: include/linux/netdevice.h

7

8 NETWORKING [IPv4/IPv6]

9 F: net/ipv4/

10 F: net/ipv6/

11 F: include/net/ip*

12 F: arch/x86/net/*

Listing 3.1: Fragment from a Linux kernel maintainers file

Two architectural decisions are made in respect to the points of measurement:

• doing per-subsystem measurements, which is more meaningful from the perspec-

tive of a user application.

• adding probes around call sites rather than inside the target function. This means

that not all calls to a given function are probed, but only those coming from

another subsystem. The number of call sites, even when just considering the

ones which cross subsystem boundaries, far exceeds the number of functions.

However, even though the absolute number of required probes is higher (87 000

and over 140 000 when considering function pointers as well) this limits probe

effects and reduces overhead.

3.2.2 The Resourceful kernel module

A kernel module is responsible for dynamically inserting probes into a running kernel,

recording provenance data about system calls that are executed and about the context

in which they execute (determining what other workloads are competing for the same

resources as an instrumented application).

The resulting data is stored within the kernel and aggregated according to opaque

handles provided from user-space (the activity tokens). This allows applications to do

custom “per-activity” resource aggregation. For example, a web server can use the

same token when doing all the processing for servicing a http request.

The kernel module exposes two new character devices to user-space (Figure 3.4):

one responsible for data (/dev/rscfl-data) and the other (/dev/rscfl-ctrl) respon-

sible for control messages. When the instrumented process mmaps the data device, a

60

in
it

Special
character devices

dev/rscfl_ctl

dev/rscfl_data

mmap

a
c
c
t

to
k
e
n

re
a
d

ioctls

config
new_tokens
debug
shutdown

mmap-ed region

rscfl API

get_new swap, free set interest get_acct get_subsys { id, all }

user space view

kernel space view

Kernel probes (kamprobes) Scheduler interposition

Subsys Measurement

binary (vmlinux)

probing
addresses

subsystem
boundaries

aggregate per (token, subsys)

control data

Figure 3.4: Resourceful architecture; implementation details

memory region specific to that thread is created on the kernel side and registered with

the kernel module, in a per-cpu, pid-indexed hash table. This region will hold all mea-

surement data for the given thread and will be directly accessible to the application in

its address space. Other applications (monitors) can be configured to process data on

behalf of an instrumented process when needed (if they have sufficient permissions to

read from the data device).

The control device holds internal state regarding what system calls should be in-

strumented as well as user-preference flags controlling the actual instrumentation. Fur-

thermore, the devices exposes a number of ioctls for general communication with the

module (start/stop, probe insertion, benchmarking flags or configuring what probes

should currently be active) .

The low-level interaction with those character devices is abstracted away by the

61

user-space API. Applications will use this API to get access to all Resourceful func-

tionalities, as well as more complex user-space data processing (functional-style map-

reduce features).

Architectural decisions:

• Allow all functionality to be placed within a kernel module, without requiring

kernel source code changes;

• Define optimised x86 trampolines (called kamprobes) for low overhead prob-

ing, because of issues with existing kernel mechanisms (kprobes, ftrace and in

part eBPF in its current form);

• In-kernel aggregation of per-activity data, while retaining per-subsystem break-

downs;

• Define scheduler interposition and per-cpu data structures in order to reduce per-

probe overhead and eliminate locking

Kamprobes8

The main problem when attempting to systematically measure what happens in the

Linux kernel is the fact that current probing mechanisms are not designed to scale,

considering both registration of probes and their execution. While the task of imple-

menting yet another probing mechanism should not be taken lightly, the requirements

of a system like Resourceful, which aims for the ability to do pervasive measurements

(through hundreds of thousands of probes), have shown that this is necessary.

Looking at current Linux kernels, just the operation of adding 60 000 kprobes to

various places will take approximately half an hour, while a test server repeatedly

crashed when trying to add more than 65 000 probes. This is mainly a design issue of

the probing subsystem (adding probes has a O(n2) complexity).

During probe execution, both the ftrace mechanism (mcount) and kprobes per-

form hash lookups in order to find the corresponding probing code. Some types of

kprobes actually use the ftrace mechanism for running code at the beginning of a ker-

nel function and will end up doing multiple lookups per probe being fired9. Those

lookups significantly add to the measured per-probe overheads (see Section 3.3 for an

evaluation), and negatively influence instruction caching and pipelining. With numer-

ous kprobes firing constantly, perf reports the probe hash lookup function as the top

8The Kamprobes implementation represents a joint effort of myself and Oliver R.A. Chick ; I have
implemented the first working prototype in user-space assembly, tail call optimisations and the possibility
to avoid calling the post handler when not needed

9Masami Hiramatsu has been working on a patch to improve scalability and avoid multiple hash
lookups, but this is yet to be merged in the mainline kernel. Irrespective of optimisations, the current
design involves hash lookups – which kamprobes avoid alltogether.

62

http://orcid.org/0000-0002-6889-8561

cycle consumer in the kernel (saturating the CPU). The current design of eBPF (ex-

tended Berkeley Packet Filters) also suffers from the same overhead problems, as it

only allows attaching eBPF programs to kprobes (with all the disadvantages described

above). Other operating systems such as FreeBSD do not have similar issues when

registering probes through equivalent mechanisms. However, the design choices made

while building kamprobes will also pose interest to them in terms of achieving low-

overhead selective probing (targeting particular calls to a function and not all of them).

This type of probing is important as we aim at tracing very frequent operations, such as

firing probes on the software paths in 10 GbE and beyond without dropping packets10.

For being able to register and fire hundreds of thousands of probes with minimal

impact on the system, we have designed an optimised low-level probing mechanism

called a kamprobe11. This trades off generality and memory footprint for speed of

execution. Functionally, a kamprobe behaves like a hybrid between a pure kprobe12

(which can be placed on any instruction) and a kretprobe (which allows probing func-

tion entry and exit points). Instead of targeting function entry points, kamprobes are

specialised to probe any call instruction. This means they can target particular invo-

cations of a function instead of indiscriminately probing all calls to it (Figure 3.5).

Unlike kprobes, kamprobes do not place extra interrupts (int3) in the execution path,

and will thus also execute faster on platforms where interrupts are slow (i.e virtualized

environments where interrupts are forwarded from DOM0).

Similar to a kretprobe, a kamprobe consists of two functions: a pre handler that

gets executed before the original (probed) function and has access to the function’s

arguments and a post handler that gets executed after the original function and will

have access to its return value.

For each unique pair of (call site, probing function), the machine code of a cus-

tom x86 trampoline is written in an executable memory area. The kernel code at the

probed location then gets rewritten on the fly13 to call into the trampoline instead of the

original function. The general structure for such a trampoline is shown in Listing 3.2.

1 ; system -call kamprobe on orig_function

2 probe_rtn: 0x0 ;region to store return address

3 ; save return address into region above

4 mov %rsp %r11

5 mov %r11 #probe_rtn

10in 10GbE, the minimum interpacket gap is 9.6 ns while for 40GbE that goes down to 2.4 ns; queueing
during switching or routing may change the characteristics of data transfers, making them bursty [153]

11kernel advanced measurement probe
12A kprobe implements the basic low-level kernel mechanism for probing a single instruction. Using this

mechanism, the kernel also offers higher-level probes: jprobes (used to probe function entry points and
have access to their arguments), and kretprobes (used to wrap function calls by executing extra handlers
both on function entry and function exit).

13this also takes into account multi-CPU setups where the code being modified might be in-execution
on other CPUs

63

Kernel instruction stream

Kprobe

Kretprobe

addr1

addr2
runs

addr3

trampoline

all calls to function are probed

...

Kamprobe

callsite 1 is probed, callsite 2 is not

...

addr4

callsite1

callsite2

runs

Figure 3.5: Comparison between kamprobes and current Linux probing mechanisms. The
hashed areas represent instructions rewritten on-the-fly in the kernel instruction stream. For
Kprobes, the int3 microcode overwrites the first bytes of the probed instruction (test %rax
%rax). For Kretprobes and Kamprobes, I present a hypothetical probe placed on the dump -
task struct function.

6 ; now save registers as per ABI. this way , the

7 ; pre -handler can not interfere with orig_function

8 push [r10 , r9, r8, rcx , rdx , rsi , rdi , rbx , rax]

9

10 callq [pre_handler]

11

12 ;restore registers

13 pop [rax , rbx , rdi , rsi , rdx , rcx , r8 , r9, r10]

14

15 ; set return location to #after_orig

16 mov #after_orig rsp

17 jmp [orig_function]

18

19 ; set stack for return into the original code stream

20 after_orig: mov #probe_rtn %r11

21 push r11

64

22

23 ; post handler returns directly into the original code

24 jmp [post_handler]

Listing 3.2: ASM equivalent code for the kamprobe trampolines

Two low-level optimisations have been implemented to further reduce overhead:

the first is a tail-call optimisation, set up in lines 20-21: instead of returning into the

kamprobe wrapper, the post handler will return directly into the original instruction

stream.

The second optimisation allows for skipping the execution of the post handler

when the pre handler returns a non-zero value. Executing the change of the return

address previously operated at line 16 in Listing 3.2 is now conditioned on a 0 return

value of the pre handler. Taken together, the two optimisations bring the overhead of

executing a probe with empty pre and post handlers to that of an additional access to

the main memory (evaluation details in Section 3.3).

1 ...

2 callq [pre_handler]

3

4 test %rax , %rax

5 jnz #restore

6

7 ;if jnz jumps over those instructions , orig_function

8 ;returns directly into the original instruction

9 ;stream

10

11 ;0x48 is the number of entries on the stack before

12 ;the return value

13 mov #after_orig 0x48(%rsp)

14

15 ;restore registers

16 restore: pop [rax , rbx , rdi , rsi , rdx , rcx , r8 , r9, r10]

17

18 ; set return location to #after_orig

19 jmp [orig_function]

20

21 ; set stack for return into the original code stream

22 after_orig: mov #probe_rtn %r11

23 push r11

24

25 ; post handler returns directly into the original code

26 jmp [post_handler]

65

Listing 3.3: kamprobes - optimisation for skipping the post handler

There is a good reason for the current state of low-level probing mechanisms on

Linux: they have been designed to be (i) general and (ii) used for targeted instrumen-

tation (tens of probes): this type of instrumentation requires developers to understand

the system and to investigate iteratively for the location of the problem. Resourceful

proposes a different take, with pervasive instrumentation (tens or hundreds of thou-

sand probes) aiming at semi-automatic identification of problematic components/be-

haviours. As a trade-off, kamprobes are limited to:

• probing at function boundaries

• x86 code (not a limitation of the design but just of the current implementation)

• consuming more memory as the wrapper/trampoline code is duplicated for each

probe in order to avoid hash lookups

• no execution safety (unlike an eBPF program, the code executed in the pre and

post handlers can easily crash the system or introduce vulnerabilities)

The way they are currently implemented, kamprobes allow the overlaying of other

probing mechanisms such as kprobes or mcount calls (the mechanism used by ftrace),

as long as care is taken to avoid recursion (the kprobes are not probing kamprobe code

and kamprobes code is not probing kprobe functions).

Scheduler interposition

Resourceful needs to keep a non-trivial amount of contextual data around, so that each

probe knows in what per-process memory region should accounting data be saved,

what tokens are currently active, what is the current subsystem nesting level, etc.

In order to access this data with minimum overhead, Resourceful virtually aug-

ments the kernel task struct data structure. This virtual augmentation is done in

order to avoid modifying kernel code directly, which would imply the need to run cus-

tom kernels for Resourceful functionality. Instead, we use a set of pid-indexed per-CPU

hash tables that are kept up-to-date when processes are scheduled in, out or migrated

to different CPUs. Effectively, probes have access to a variable called current acct

(Figure 3.6) which is the equivalent to the kernel variable current (the variable that

always points to the task struct of the current process). Like current, current acct

always points at a data structure containing the current Resourceful context.

Any kernel probes requiring information about whether measurement should be

done or not or about what types of aggregation should be configured will access the

66

thread-specific rscfl context through the current acct pointer. Similarly, the results

of any measurement performed for a given pid are written in the corresponding data

section. The memory regions themselves can be mapped in user-space by multiple pro-

cesses, allowing for measurements controlled by other applications (cross-monitoring).

Scheduler interposition

Figure 3.6: Interposing the Linux scheduler

The actual scheduler interposition is implemented using the kernel tracepoints func-

tionality, which allows modules to register functions to be called at particular points

in the execution stream. For the interposition, Resourceful uses the sched switch,

sched migrate task and sched process exit tracepoints.

Kernel measurements

Because of the way the scheduler interposition is implemented (one hash table per cpu)

and the way the memory region for writing measurement data is allocated (one region

per application thread), we can fire kamprobes and perform measurements without the

need of acquiring locks. This reduces per-probe overheads and simplifies the design of

the system.

Furthermore, the API exposed to user space allows for zero-copy access to the

measured data. This assumes that aggregation is configured to be done kernel-side

and is limited to measurements of synchronous execution (the execution of the probed

kernel paths and of application code does not overlap). Using this feature means one

might need to increase the size of the kernel-level per-thread Resourceful data region:

using zero-copy means some data elements will not be freed as soon as possible, which

can lead to buffer overwrites on the kernel side and loss of measurement data (the user

space application is informed when this happens). Alternatively, the data can be copied

to user-space whenever the activity associated with a given token ends.

67

3.2.3 User space API

The resourceful user-space API allows the applications to:

1. configure kernel-side aggregation and the set of active kamprobes

2. express interest in the resources consumed by particular system calls (one-shot),

or start/stop measurements while associating them with a given activity token;

3. define activities based on meaningful application semantics (i.e. “processing a

request”) – resource consumption reports are then be aggregated per activity, in

addition to their per subsystem aggregation.

4. read the aggregated data and run code based on the measured values

The main role of the API is to abstract away from applications the details required

for setting up and reading kernel-side measurements. Because of this, the application is

not exposed to any of Resourceful’s implementation details, and in addition high level

behaviour can be implemented on top of the basic operations. The underlying sys-

tem allows for multiple processes to use Resourceful simultaneously: each application

thread receives a separate reserved memory buffer when initialising (call to rscfl -

init). Applications are able to express interest, define activities and measure resource

consumption independently from one another. However, the current implementation

considers the kernel subsystems where measurements are performed to be defined at

the time when the kernel module is loaded (i.e it’s not possible for one application to

measure just time spent in the TCP stack while another tracks time spent in VFS – both

applications will receive data from both subsystems).

Listing 3.4 briefly shows some of the important data structures used by the API. On

line 15, rscfl handle can be seen as an opaque structure by the application, with each

thread getting its own such handle. The internal data fields of the handle are used by

the API to access the two memory regions shared between the kernel and user space:

the data region (the buffer at line 17 - with the underlying structure being rscfl acct -

layout t) and the control region (the member at line 18).

The control memory layout is used to make sure that (i) there is version compatibil-

ity between the version of the API library and the loaded Resourceful kernel module;

(ii) the API has access to tokens and (iii) it can express interest in starting the measure-

ments or stopping them.

On the other side, the data layout is split into two regions: an array of accounting

structures that represent each aggregated measurement and contain an index of all

kernel subsystems that were touched. The second region contains the actual data for

those subsystems (with the various PMU and kernel counter values). This arrange-

ment allows a fixed size for each of the regions while not requiring each aggregated

measurement to touch the same number of subsystems.

68

1 struct rscfl_acct_layout_t

2 {

3 struct accounting acct[STRUCT_ACCT_NUM];

4 struct subsys_accounting subsyses[ACCT_SUBSYS_NUM];

5 };

6

7 struct rscfl_ctrl_layout_t

8 {

9 unsigned int version;

10 syscall_interest_t interest;

11 int new_tokens[NUM_READY_TOKENS];

12 int num_new_tokens;

13 };

14

15 struct rscfl_handle

16 {

17 char *buf; // opaque field , data organized as rscfl_acct_layout_t;

18 rscfl_ctrl_layout_t *ctrl;

19 int ctrl_fd; // for ioctls

20 }

Listing 3.4: Important Resourceful data structures

The operations available to userspace are shown in Listing 3.5, grouped by purpose.

As can be seen, a small number of functions is sufficient for making use of all Resource-

ful functionality: the application needs to first obtain a handle by calling rscfl init(),

can retrieve opaque tokens representing each high-level activity (rscfl get token), can

start/stop accounting and then read the results. This is a two-stage process: first re-

trieving an index into the results associated with every activity (rscfl read acct) and

then accessing the actual subsystems through rscfl get subsys.

The default aggregation of resource consumption metrics happens at the level of

an activity token, and is done in the kernel: all resources consumed by a user token

are reported in a single data structure. Besides doing aggregation at the level of the

Linux kernel, it is possible to aggregate things in user-space as well (this is usually

needed for asynchronous operations of type 1, when the application finds out in what

data structure the measurements should be aggregated into after the kernel has already

done the measurements). The rscfl merge acct into function is used for this purpose.

Listing 3.6 presents a simple example of using activity tokens to record system call

metrics. All aggregation happens in-kernel.

1 // initialisation

2 rscfl_handle rscfl_init ();

69

3 rscfl_handle rscfl_get_handle(void);

4

5 // tokens (tracing application activities)

6 int rscfl_get_token(rscfl_handle rhdl , rscfl_token_t **token);

7 void rscfl_switch_token(rscfl_handle rhdl , rscfl_token_t *token_to);

8 int rscfl_free_token(rscfl_handle rhdl , rscfl_token_t *token);

9

10 // accounting

11 int rscfl_acct(rscfl_handle rhdl , rscfl_token_t *token ,

12 interest_flags fl);

13 int rscfl_read_acct(rscfl_handle rhdl , accounting *acct ,

14 rscfl_token_t *token);

15 subsys_idx_set* rscfl_get_subsys(rscfl_handle rhdl ,

16 accounting *acct);

17

18 // user -space aggregation

19 subsys_idx_set* rscfl_get_new_aggregator(unsigned short no_subsys);

20 int rscfl_merge_acct_into(rscfl_handle rhdl , accounting* acct_from ,

21 subsys_idx_set *aggregator_into);

Listing 3.5: The basic Resourceful API

The API also provides high-level functionality based on the operations described so

far. In particular, I have implemented the ability of doing map-reduce14 style processing

of results in user-space: for example, the application would be able to select a given

field inside measurements (for example, CPU cycles or memory consumed) and provide

a reduce function that operates on the field across multiple subsystems. This can be

used for example for easily obtaining sums (total number of cycles across all kernel

subsystems) or for doing other mathematical processing (min/max/standard deviation).

However, if data in each subsystem is of interest (as is the case in evaluations performed

in this thesis), the per-token aggregation happening in the kernel is sufficient.

1 //... assume rhld is an initialised Resourceful handle

2 FILE *f1, *f2;

3 rscfl_token_t token1 , token2;

4 accounting acct1 , acct2;

5

6 rscfl_get_token(rhdl , &token1);

7 rscfl_get_token(rhdl , &token2);

8

9 rscfl_acct(rhdl , &token1 , ACCT_START);

10 f1 = fopen("data.md", r);

14meaning from functional programming, considering map/filter/fold operations

70

11 fprintf(f, "writing to file 1\n");

12 //...

13 rscfl_switch_token(rhdl , &token2); // token1 becomes inactive

14 //...

15 f2 = fopen("data2.md", w);

16 fprintf(f, "writing to file 2\n");

17 fprintf(f, "again ...\n");

18 rscfl_acct(rhdl , NULL , ACCT_STOP);

19

20 //read resources consumed by token1 (2 system calls)

21 rscfl_read_acct(rhdl , &acct1 , &token1);

22

23 //read resources consumed by token2 (3 system calls)

24 rscfl_read_acct(rhdl , &acct2 , &token2);

Listing 3.6: Example using activity tokens

3.3 System evaluation

3.3.1 Evaluation goals

The evaluation presented in this chapter focuses on evaluating Resourceful’s ability to

fulfil stated goals. To that end, a series of microbenchmarks will show that the low-level

probing mechanism (kamprobes) introduces smaller overheads than existing probing

methods, both for system calls doing very little actual work as well as for ones where

the baseline latency is higher. This characterisation will show worst-case behaviour

as in practice the cost of slightly more expensive system calls will be amortised by

application operations.

Then, I will switch focus to a series of macrobenchmarks, testing both the per-

formance perturbation that Resourceful induces on two real applications under load

(lighttpd and fio) as well as the sanity of resulting measurement data. Here, the goal

is showing that Resourceful induces minimal shifts in the latency distributions of appli-

cation operations and does not produce statistically significant decreases in throughput.

This is essential as it suggests that when measuring Resourceful is unlikely to become

itself the bottleneck.

There is a separate discussion on showing that the underlying premise of Resource-

ful is reasonable: I will show that tracking asynchronous resource consumption is

important in explaining latency variations; Furthermore, I will pick a workload where

the bottleneck is not immediately obvious (i.e the workload is not simply I/O-bound

or CPU-bound) and determine how much of the latency can be explained by measure-

ments taken using Resourceful.

71

Lastly, I will set to prove that using the same data to answer simple what-if ques-

tions is possible under certain constraints. Relaxing those constraints is the topic of

Chapter 4.

Methodology

The results described in the evaluation sections of this thesis are based on real system

measurements done using Resourceful or other tracing and probing tools, for compar-

ison. Most of those measurements come from inspecting complex systems that can be

controlled through numerous configuration parameters, and are affected by noise. The

realities of such system measurements place the analysis of results in a non-standard

context:

1. typical distributions are strongly non-normal, hard to parameterise and often

multi-modal15: the mean is a poor statistic for describing them, and we are often

interested in the behaviour of the system in the tail region of the distribution;

Multi-modality is to be expected given the existence of deep memory hierarchies

and due to the presence of various caches in different layers (application/kernel).

Each caching level may generate it’s own peak in the observed distributions.

2. perceived non-normality may exist as a consequence of underlying population

groups and factors that are unknown at the start of the analysis. In most cases,

deciding on a data stratification strategy before conducting the measurements

is challenging. Indeed, part of the analysis process described when evaluating

Resourceful results is focused on isolating such groups;

3. relationships between different random variables are sometimes non-linear and

sometimes even non-functional (a simple example of such a non-functional rela-

tionship would be an “X” shape or multiple parallel lines within a scatter plot).

As a direct consequence of point 1, the statistic evaluation will be done directly on

non-parametric, empirical distribution functions (derived directly from the measure-

ment sample) instead of trying to fit known distributions for estimating the underlying

populations’ characteristics. Most of the time, we will be simply using the plug-in

principle to estimate population distributions, considering a large number of samples.

In order to understand how confident we can be in estimations of particular statistics

(median, standard deviation, percentiles) under such conditions, we will use bootstrap-

ping methods for deriving confidence intervals. When hypothesis testing is needed for

determining whether two samples come from the same population or not, we will sim-

ilarly try to apply non-parametric tests such as Mann-Whitney’s U test instead of the

standard t-test (which works best in the context of normal distributions).
15this is the reason one typically investigates “tail latency”: a non-trivial percentage of samples fall

towards the right-end of the distribution; normal distributions are not characterised by “long tails”.

72

Because of point 3, measures based on the mean, like correlations, are not always

appropriate in describing the strength of relationship between two variables. Even

though they are harder to estimate without bias, information theory entropy-based

measures such as mutual information will be used to perform variable selection.

Overhead measurement We normally look at overheads when comparing the be-

haviour of a system in terms of a given parameter (e.g. latency, throughput) between

two independent experiments. For example, we would like to analyse the overhead

imposed by an application running with Resourceful probes and doing measurements

when compared to the application running without any probing. Each experiment

is seen as a random variable (Xbase, Xrscfl), with the corresponding empirical distri-

butions built from the measured samples. I will contrast the usual approach to the

methodology typically considered in the evaluation of the thesis:

Normally, the analysis target is to determine a confidence interval for the difference

between the means of the two samples x̄rscfl−x̄base, at a given significance level (.05)16.

The main issue of this approach, besides the well known difficulty in interpreting

p-values and confidence intervals intuitively, is that we’re not necessarily interested in

how the mean of the overhead behaves. One might rightfully be interested in a worse-

case overhead (99.9 percentile) that remains acceptable. Can I run Resourceful on 500

leaf services that are used for answering a single request? (as previously described in

Note 3.2)

Answering those questions requires the identification of a distribution of possible

overheads given the current samples from Xbase and Xrscfl. To compute this distribu-

tion, we introduce a new random variable, Xovhd = Xrscfl − Xbase to represent the

difference between the two previous random variables. The probability distribution

function of Xovhd can be defined in terms of the joint probability of the original two

variables:

P (Xovhd = k) =
∞∑

i=−∞
P (Xrscfl = i,Xbase = j), with i = j + k

which becomes a convolution if we consider Xbase and Xrscfl independent:

P (Xovhd = k) =

∞∑
i=−∞

P (Xrscfl = i) · P (Xbase = i− k)

In practice, we will use a FFT convolution to efficiently estimate the result nu-

merically given a large number of samples. This gives us the complete distribution of

16A 0.05 significance level tells us that when repeatedly computing the confidence intervals from new
samples of the same population (in our case, the confidence interval for the difference in mean values
between two configurations), the interval will contain the true difference 95% of the time. In other words,
there is a 5% chance that the determined interval does not contain the true overhead.

73

overheads, from which we can pick particular statistics of interest (e.g. the 99th per-

centile) and compute corresponding confidence intervals. The only less intuitive aspect

is the fact that if the distributions of Xrscfl and Xbase overlap, then the distribution of

Xovhd will also contain negative values. This needs to be understood in the sense that

there are samples in the Xbase distribution which are higher than samples in the Xrscfl

distribution.

Experiment design

The expected overhead of firing one empty kamprobe is below 100 cycles / 30 ns.

Therefore, accurately measuring those overheads poses a challenge: they will be in the

order of an extra access to the main memory. To have any confidence in such overhead

measurements, the initial set of experiments (microbenchmarks) will be executed in a

tightly controlled environment:

1. isol cpus/taskset: one of the CPUs is isolated from the kernel SMP balancing

and scheduling algorithms. This assures that, excepting the process doing the

benchmarking, no other processes is being executed on that core. Furthermore,

the benchmarking process is not interrupted by the scheduler.

2. IRQ tuning: in some of the experiments (this will be mentioned for every exper-

iment using the technique) I have diverted interrupts away from the CPU doing

the measurements. This is done in order to eliminate possible variation due to

interrupt service routines executing arbitrarily on CPUs doing Resourceful mea-

surements. However, it is not always realistic to impose such tuning, as real

systems will most likely either not tune IRQs or use different settings than the

ones picked in this setup

3. TCP tuning: a number of TCP stack options have been set in order to account for

the approximately loss-free network in which we conduct experiments, as well as

the need for lots of connections per second (port reuse is particularly important)

4. cache warming: a number of the same operations as the ones being measured are

performed before starting the actual measurement, in order to warm up caches

(from libc, kernel or the CPU).

5. batched measurements: instead of measuring a single extremely short-lived oper-

ation, we measure 1000 of them and then obtain the average per operation. This

improves the accuracy of results but might also filter out some outliers or really

slow operations from the data. We can balance the size of batching if we observe

too little variation in the final results.

74

6. timers: we perform raw TSC measurements (cycles), and obtain the wall clock

time using CLOCK MONOTONIC17

All measurements are done on a server with an 8 core Intel Xeon E3-1231 v3 CPU

at 3.40GHz (1 ns = 3.4 cycles). A constant TSC is available for this CPU, and reading

the hardware cycle counter has also been enabled for virtual machines in experiments

that use them. The server has 32Gb of RAM. Processor frequency scaling and other

software throttling mechanisms have been disabled. The Linux kernel version used in

the experiments is 3.19.

Kamprobe microbenchmarks against other probing mechanisms

The evaluation of kamprobes as they are used in Resourceful starts through a series

of microbenchmarks that highlight the behaviour of the measurement framework in a

worst-case scenario: performing lots of system calls in a tight loop. In practice, the

expected overheads will be amortised over the system call and a number of operations

performed by the application in user space. However, applications executing lots of

system calls could expect overheads like the ones shown below.

I focus on three system calls: socket, read and write. The socket system call

has been chosen as it does little work and is normally very fast: it mainly allocates

resources in the network stack and then creates a corresponding file descriptor that can

be handed to user space applications. The read and write calls show the behaviour

of probing on the corresponding paths in the kernel, dependent on the size of reads

and writes, kernel caching, etc. Those are system calls that can block and are more

representative of calls that do a non-trivial amount of work in the kernel.

For each system call, we study the distribution of the number of cycles18 until

return, in the following situations:

baseline No kernel-side tracing or measurements enabled. This is close to the latency of

the system call on our hardware under normal circumstances.

rscfl-idle The Resourceful kernel module is inserted but performs no active measurements.

The overheads here are simply caused by the probes checking that no accounting

should take place and returning. This is close to the minimal overhead that can

be imposed by kamprobes, both when considering monitored applications and

other applications running on the same system.

17using CLOCK MONOTONIC RAW sometimes imposes an additional unwanted latency; for the durations
of time being measured I do not expect significant impact due to NTP or adjtime incremental time
adjustments.

18cycles were chosen as a measure instead of other possibilities such as wall clock time because they are
inherently cheap to measure (by reading the TSC), and thus will influence the experiments as little as pos-
sible. For measurement, I use the methodology recommended by Intel in one of their whitepapers [109],
in order to limit the effects of instruction reordering and inherent measurement variance. In particular, I
use the cpuid and rdtscp instructions.

75

rscfl This shows the overhead of firing all required kamprobes (on crossing subsystem

boundaries) and doing the actual Resourceful measurements for the given system

call.

rscfl-ftrace In the way it was defined above, the rscfl series is not directly comparable to

ftrace, because it collects much more data on crossing from one subsystem to

another. For this reason, I have modified Resourceful for enabling a closer apples-

to-apples comparison with ftrace. In this mode, Resourceful only snapshots the

cycle counter on every function entry. Ftrace also does a slow symbol lookup

for the function while we only record its address (but symbol lookup can easily

be executed asynchronously). However, ftrace caches the symbol resolution, and

that will happen during the experiment cache warmup phase (unless the number

of functions touched during the experiment exceeds the cache size). I therefore

claim that rscfl-ftrace is functionally equivalent to ftrace using the function tracer.

kprobes This is equivalent with the rscfl series, but uses the normal Linux kernel probing

mechanism (kprobes) for performing the required Resourceful measurements. It

provides for a direct evaluation of the advantages of kamprobes when relating to

existing mechanisms.

ftrace enables ftrace with the function tracer while running the microbenchmark. Other

tracers are expected to be even more expensive than the results shown here.

Those measurements are split into two groups in order to avoid cluttering the same

graph: the first looks at a comparison with ftrace, while the second shows the rest of

data, highlighting the behaviour under various Resourceful configurations.

The subsequent figures detailing the actual overhead distributions (3.8, 3.9) are

computed as described at the beginning of this section. In the title of those graphs,

I first mention the baseline and then the test random variable; The shown overheads

represent a distribution of the test – baseline random variable.

76

0 5000 10000 15000 20000 25000

2000

4000

6000

8000

10000
(a) comparison with ftrace

0 5000 10000 15000 20000 25000

cycles

0

2000

4000

6000

8000

10000
(b) resourceful comparisons

Calling the socket syscall

baseline

rscfl-ftrace

ftrace

#
 o

f
sy

st
e
m

 c
a
ll

s

baseline

rscfl-idle

rscfl

kprobes

Figure 3.7: Cumulative histograms representing cycles required for calling a socket syscall
under different conditions. Plot (a) shows a comparison between using kamprobes to imple-
ment ftrace functionality (rscfl-ftrace) and typical ftrace overheads when using the func-
tion tracer. Plot (b) looks at Resourceful overheads, when the kernel module is inserted but not
performing measurements (rscfl-idle), doing measurements based on kamprobes (rscfl) and
performing the same measurements using existing kernel probing mechanisms (kprobes).

Socket system call: discussion The first thing to notice in Figure 3.7 is that all probing

methods based on hash lookups, like ftrace or kprobes are significantly slower than

kamprobes. Ftrace, besides being the slowest in the group, also introduces more vari-

ability in the time it takes to execute system calls when compared to other methods.

Figure 3.8b further confirms this observation, showing that just the overhead of using

ftrace instead of rscfl-ftrace (based on kamprobes) is almost 6x the time it would

take to execute the socket system call without any probes19. A further major issue with

ftrace is its selectivity: any filter that an end-user adds (for example, for limiting prob-

ing to a subset of kernel functions, like required by Resourceful) introduces additional

overhead20.

In terms of Resourceful measurements based on the kamprobe mechanism, Fig-

ure 3.8a shows that they introduce a 1.47x overhead relative to the baseline. This

19Mean overhead (14875.4) divided by mean baseline (2500) = 5.95
20No filters were added in the current experiment

77

3200 3400 3600 3800 4000

cycles

0.0

0.2

0.4

0.6

0.8

1.0 3697.8 3883.8

pdf

cdf

mean

95.0%ile

socket overhead distribution (baseline vs rscf)

(a) Overheads imposed by accounting with Resourceful

14600 14800 15000 15200 15400 15600 15800

cycles

0.0

0.2

0.4

0.6

0.8

1.0 14875.4 15213.0

pdf

cdf

mean

95.0%ile

socket overhead distribution (rscf -ftrace vs ftrace)

(b) Overheads of ftrace compared to rscfl-ftrace

Figure 3.8: Overhead distributions showing the expected impact of Resourceful using kam-
probes and the (comparably) significant overheads imposed by running ftrace

11400 11600 11800 12000 12200

cycles

0.0

0.2

0.4

0.6

0.8

1.0 11770.3 11898.3

pdf

cdf

mean

95.0%ile

socket overhead distribution (rscf vs kprobes)

(a) Comparing probing methods (kprobes - kamprobes)

200 300 400 500 600 700 800 900 1000

cycles

0.0

0.2

0.4

0.6

0.8

1.0 631.4 698.9

pdf

cdf

mean

95.0%ile

socket overhead distribution (baseline vs rscf -idle)

(b) Probing effects of kamprobes

Figure 3.9: Effects of probing

might seem high when expressed as a percentage, but one needs to remember that the

socket call is extremely fast in the first place. The result also needs to be put into per-

spective by considering the alternative probing mechanisms, as we’ve seen for ftrace

(6x). Another comparative data point is obtained by switching the Resourceful probing

method to kprobes but keeping the measurements they execute the same. This results

in the significant overheads shown in Figure 3.9a (4.7x on average when compared to

the baseline).

Probing effects: Because the socket system call does very little actual work before re-

turning, this microbenchmark also offers the opportunity of understanding the probe

effects that one might expect from kamprobes with respect to time overheads. Consid-

ering that a socket system call crosses 16 subsystem boundaries and that a kamprobe

is fired on each crossing, we summarise the results in Table 3.1. The rscfl-idle con-

figuration represents overheads that would be incurred by applications not performing

Resourceful measurements but executing probed code-paths. The rscfl configuration

considers non-empty probes running actual Resourceful measurements. Probe effects

78

Configuration Overhead (cycles) Overhead (ns)21 Computed from
avg 95%ile avg 95%ile

rscfl-idle (probe effect) 39.46 43.68 11.6 12.8 Fig 3.9b
rscfl 231 242.7 67.9 71.3 Fig 3.8a

Table 3.1: Summary of Resourceful probe effects

also include any type of bias introduced in the measured data. A thorough evaluation

of those effects is left as future work.

103 104 105
0

10000

20000

30000

40000

50000
(a) comparison with ftrace

baseline

103 104 105

cycles

0

10000

20000

30000

40000

50000
(b) resourceful comparisons

baseline

32

64

128

256

512

1 K

4 K

10 K

100 K

300 K

re
a
d

si
z
e

(b
y
te

s)
32

64

128

256

512

1 K

4 K

10 K

100 K

300 K

re
a
d

si
z
e

(b
y
te

s)

Calling the read syscall

#
 o

f
sy

st
e
m

 c
a
ll

s

rscfl-idle

rscfl

kprobes

rscfl-ftrace

ftrace

Figure 3.10: Cumulative histograms representing cycles required for calling a read syscall under
different conditions. The meaning to the series remains as before; Please note the logarithmic x
axis. The shape of the cumulative histogram is atypical because we have represented the cycles
required for fulfilling reads of different sizes on the same graph. The sizes are shown on the
secondary y axis marking the start of samples with reads of that size. For each read size, 5000
samples were collected.

Read system call: discussion In order to avoid plotting a 3D histogram which is

harder to interpret, Figure 3.10 presents the cumulative histogram for the system call

without stratifying on the read size. This is problematic only for the small read sizes,

where the distributions overlap. We can identify each of the larger read sizes repre-

sented by staircase jumps towards the same y value. Identifying the x value for which

21Considering a fixed CPU frequency of 3.4 GHz

79

les

(a) Kprobes overhead when compared to kamprobes for
medium-sized reads

les

(b) Ftrace overheads for medium-sized reads

Figure 3.11: Overheads for the read system call. The mean overhead is marked by a dashed
line. The number after ’cdf’ in the legend of each graph represents the read size in bytes.

each of the curves reaches a given y can then be used to compare like-for-like probing

results for read calls of the same size.

We can still clearly observe the relative differences between the experiments: the

ranking of different probing or tracing methods stays identical to the one discussed

for the socket system call. Because of the logarithmic x axis, constant overheads are

represented as smaller and smaller intervals moving towards the right, as can be seen

in Figure 3.10a.

In terms of a detailed look at the overheads, we will compare the Resourceful mea-

surements under two probing methods (existing – kprobes and the one proposed in

this chapter – kamprobes). Secondly, we will take a look at how ftrace performs in

relation to the baseline to give a sense of just how much slower is this tracing method

when compared to Resourceful measurements.

For this particular experiment, the Resourceful measurements using kprobes scale

well, although the absolute overheads remain worse than what kamprobes provide,

across all read sizes (as shown in Figure 3.11a). Here, the overhead stays approxi-

mately constant for reads between 10 KiB and 100 KiB bytes, but then starts increasing

linearly.

In contrast, the ftrace overheads for large read sizes shown in Figure 3.11b are

significantly higher, and increasing linearly with the read size.

The overhead of Resourceful probing reads using kamprobes varies between 8%

(for large reads) and 20% (for small reads) when compared to the baseline. Using the

same reference, the minimum ftrace overhead is 2.5x

Write system call: discussion Figure 3.12 follows the same conventions described

for the read system call. However, here we see both kprobes and ftrace at a big

disadvantage when compared to the proposed probing method: the differences in both

80

0

5000

10000

15000

20000
(a) comparison with ftrace

baseline

ftrace

rscf -ftrace

cycles

0

5000

10000

15000

20000
(b) resourceful comparisons

baseline

kprobes

rscf

rscf -idle

32

64

128

256

512

1 K

4 K

10 K

100 K

300 K

103 104 105 106

103 104 105 106

w
ri

te
si

z
e

(b
y
te

s)

32

64

128

256

512

1 K

4 K

10 K

100 K

300 K

w
ri

te
si

z
e

(b
y
te

s)

Calling the write syscall

Figure 3.12: Cumulative histograms representing cycles required for calling a write syscall
under different conditions. The meaning to the series remains as before; Please note the loga-
rithmic x axis. The shape of the cumulative histogram is atypical because we have represented
the cycles required for fulfilling writes of different sizes on the same graph. The sizes are shown
on the secondary y axis marking the start of samples with writes of that size. For each write
size, 2000 samples were collected.

les

(a) Kprobes overhead when compared to kamprobes for
medium-sized writes (more than 1 page)

les

(b) Ftrace overheads for medium-sized writes (more than
1 page)

Figure 3.13: Overheads for the write system call. The mean overhead is marked by a dashed
line. The number after ’cdf’ in the legend of each graph represents the write size in bytes.

(a) and (b) increase as the write size increases. Ftrace performs particularly poorly in

this microbenchmark.

81

Even without going into detailed experiments for diagnosing ftrace slowdowns, a

number of possible explanations exist, related to the fact that the write system call

touches numerous functions in the kernel (as the writing is performed in chunks), pre-

senting a number of challenges for ftrace:

• the number of symbols that ftrace searches for might exceed the size of the

symbol cache, leading to expensive continuous evictions and updates

• the execution of numerous functions might lead to exhausting the tracing buffer,

leading to significant slowdowns. The fact that resourceful is able to perform

in-kernel aggregations makes it immune to this issue.

• latencies also compound as the (larger) ftrace overhead is repeatedly incurred

on functions called in a loop. This can also be observed for the evolution of the

difference between rscfl and rscfl-trace in (a), but on a much smaller scale.

The overhead of Resourceful probing writes using kamprobes varies between 20%

(for large writes) and 44% (for small writes) when compared to the baseline. Using the

same reference, the minimum ftrace overhead is 7.7x

Microbenchmark conclusions As described initially, the overheads mentioned in this

section should be seen as worst-case scenarios, as we are exercising a particularly taxing

use case for tracing and probing mechanisms: an application (the benchmark) that

does nothing else but execute system calls in a tight loop. Even so, I have shown

that kamprobes behave significantly better when compared to existing probes such as

kprobes. Furthermore, I have proved that implementing tracing and measurement tools

on top of kamprobes yields significantly smaller overheads when compared to ftrace.

With worst case overheads between 1.47x for very fast system calls and under

20% for system calls performing a non-trivial amount of operations, kamprobes may

be considered as probing mechanisms in production systems, especially as alternatives

(like ftrace or kprobes) are always slower. To get a better idea of real-world overheads,

I will next look at instrumenting existing applications.

Real application behaviour

Having analysed the probing method (kamprobes) in microbenchmarks, I now turn to

examining the overheads imposed in more realistic situations. The focus also moves

from individual probes to the overhead imposed by the Resourceful framework as a

whole. For this purpose, I have modified a popular I/O benchmarking tool, fio and a

web server, lighttpd to use the API described in this chapter and record the resources

consumed for performing individual I/O operations or responding to http requests.

The overheads imposed by Resourceful are not tightly connected to whether a par-

ticular application workload is CPU-, network- or I/O-bound. What matters instead is

82

fio workload Latency increase (%) IOPS reduction (%)
engine, threads, r/w mix, block size min 50%ile 95%ile min IOPS max IOPS

psync, 1, rand w, bs=32K 0.02 6.12 5.32 19.1 4.19
psync, 4, rand w, bs=32K 0.1 8.79 1.04 18.2 3.08

psync, 4, rand r70%w30%, bs=32K 2.27 13.5 8.97 9.44 0.1

Table 3.2: Slowdown imposed by Resourceful when running the fio benchmarking tool. All
workloads are bypassing the buffer cache by using DIRECT IO

the number of system calls that the application makes every second, as well as the com-

plexity of the code that runs on the kernel-side given the system call (as it could cross

kernel subsystems and thus trigger the execution of numerous probes). As a conse-

quence, I have picked workloads which would make heavy use of system calls (writing

small block sizes for I/O workloads and serving as many small files as possible in the

case of lighttpd).

For fio, we expect the numbers to describe results close to the worst-case sce-

nario (as benchmarking tools are intentionally pushing the system to its limits). Three

workloads using the default I/O engine are measured, using either 1 or 4 concurrent

submission threads. In all cases, the workload was I/O-bound, and more importantly,

required numerous system calls: each thread writes 1Gb to disk using a 32K block size.

It is not meaningful to compare the overheads across two workloads as the read/write

patterns were random.

I summarise the differences between running each workload with and without Re-

sourceful in Table 3.2. The increase in latency at given percentiles has been measured,

together with the reduction in both the minimum and maximum number of IOPS that

were achieved. In each case, there is a small shift in the minimum latency achievable

and a more important (max 13.5%) perturbation of the median. However, Resourceful

does not add significant further queuing along the I/O path, as shown by the limited

perturbation of the 95th percentile. Reductions in throughput (IOPS) are, as expected,

largest during periods of contention (when the achieved number of IOPS was smallest).

For evaluating lighttpd, I compare server-side request latencies22 taken when the

server runs normally (this is the baseline) with server-side latencies taken with Re-

sourceful active and performing measurements. As in the case of the microbenchmarks

in the previous section, we expect that the overheads will be percentually higher for

serving small files. This is why I analyse two file sizes, 10K and 100K. Statistics about

pages served on the internet today23 show that html document transfer sizes between

6 and 10K are most common on both desktop and mobile. Average sizes for CSS files

22Side effects of Resourceful to end-to-end latency that are indirect (for example, because of timing
changes that could affect the TCP congestion control algorithms) have not yet been analysed.

23According to http://httparchive.org, statistics from Mar 2016, measuring data from the top 1
million websites according to Alexa rankings, with raw data publicly available.

83

http://httparchive.org

0.0 0.5 1.0 1.5 2.0
cycles 1e6

0
500

1000
1500
2000
2500
3000
3500
4000 12.40%

baseline
rscfl

lighttpd latency, 10K files

(a) Change in lighttpd latency histogram, 10K files. The
shift in median expressed as a percentage of baseline is
shown

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
cycles 1e6

0.000

0.005

0.010

0.015

0.020
pdf 10K

lighttpd rscfl overhead

(b) Difference between rscfl and baseline for 10K files

0.0 0.5 1.0 1.5 2.0 2.5 3.0
cycles 1e7

0
2000
4000
6000
8000

10000
12000
14000
16000
18000 5.13%

baseline
rscfl

lighttpd latency, 100K files

(c) Change in lighttpd latency histogram, 100K files. The
shift in median expressed as a percentage of baseline is
shown

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
cycles 1e7

0.00

0.01

0.02

0.03

0.04

0.05
pdf 100K

lighttpd rscfl overhead

(d) Difference between rscfl and baseline for 100K files

Figure 3.14: Resourceful overheads when running lighttpd

(77Kb) and Font files (123Kb) are equally spaced from 100K. Larger file sizes will be

considered in later experiments, with 256K representing the size of a popular JavaScript

library (jquery) and 512K being picked to represent the average total amount of scripts

downloaded for web pages, as well as per-request transfer of video data (frames).

The results are presented in Figure 3.14. The graphics on the left (a and c) show a

visual comparison between the two latency distributions; The median of the baseline is

marked with a dashed line, while the median of the latency distribution with Resource-

ful measurements active is dotted. The difference between the medians is shown as a

percentage of the baseline median. For small files, Resourceful increases the latency of

very fast requests, but does not significantly slow down tail latency requests (the differ-

ence between the 99th percentiles is 3%). In general, the peaks of the baseline latency

disappear: this is a direct effect of some requests slowing down and moving towards

the right in the distribution, filling what were previously valleys. However, the general

shape of the distribution is maintained.

The presence of the various peaks in the baseline lighttpd distribution is caused by

the number of other requests a given request had to wait for: the first peak represents

84

requests that were served immediately, the second one requests that have waited for the

completion of processing stages from one other request, the next one waited for two

other requests, etc. This pattern will only be seen on small requests, as for larger re-

quests and longer processing times everybody will wait on average on the same number

of other requests, given by the concurrency level imposed by the arrival distribution.

Figure 3.14b shows the overhead distribution. From it, we’re mainly interested in

how far the peak is from 0. The fact that the distribution contains both positive and

negative values is natural: it simply means that the two original distributions (base-

line and rscfl) overlap. This just shows that the low-latency requests when running

lighttpd under Resourceful have a lower latency than some high-latency requests mea-

sured while lighttpd is running normally.

For 100K files, the perceived overheads are even smaller: only a 5.13% shift in the

median and an overhead distribution which is better centered around 0. Beyond the

particular experiment that I have run here, I am interested in statistically determining

the expected differences between the two samples, baseline and rscfl. For this, I

run a Mann-Whitney U test on the two samples, under the null hypotheses that the

distribution of rscfl - baseline is symmetric around 0 (i.e Resourceful introduces no

overhead):

1 wilcox.test(lighty_rscfl$lat_cyc , lighty_baseline$lat_cyc ,

2 mu=0, conf.int=T, conf.level =0.99)

3

4 Wilcoxon rank sum test with continuity correction

5 W = 5303600000 , p-value < 2.2e-16

6 99 percent confidence interval: [336208 , 419816] (cyc)

7 median difference in location : 377958 (cyc)

Listing 3.7: Results of Mann-Whitney U test for the 100K case at the 0.99 confidence level

The conclusion is that the null hypotheses can be rejected at significance level p <

0.001: The presence of Resourceful can be determined statistically. Furthermore, at

confidence level 99%, the overhead of Resourceful is between 336208 and 419816

cycles (this represents between 5% and 6% of the baseline median).

This 5 - 6% latency overhead could be further reduced by targeting measurements

(for example, only measuring cycles as a primary metric) or by limiting the number of

kernel subsystems that are probed (for example, enabling measurements for the mem-

ory allocation subsystem will inevitably result in numerous cross-subsystem transitions,

with the corresponding probes firing and adding overhead).

In terms of throughput, I have run repeated experiments (15 repetitions, 20000 re-

quests each) and measured two throughput metrics: average requests per second (req/s)

85

and average kilobytes per second (kbytes/s). This has been done for lighttpd without

any changes (baseline) and for lighttpd with active Resourceful measurements, serving

256K files. Because of repeated sampling of averages, we can consider the distributions

close to normal, and run a two-sample one-sided t test (under the assumption that the

presence of Resourceful introduces overhead, and samples from that population should

have larger values when compared to the baseline).

In both cases, the null hypothesis (that there is no difference in means between

the baseline and resourceful measurements) can not be rejected (p=0.93). The 99%

confidence upper bounds for the difference in means are:

1 99% confidence bound baseline mean rscfl mean

2 [.. 0.14] 447.8 447.7 req/s

3 [.. 36.51] 114741.2 114727.3 kbytes/s

The extremes of those confidence bounds show a 0.03% throughput decrease when

compared to the baseline. Due to the small difference in means, more data would

be needed to characterise the exact overhead in a statistically significant way. In the

end, using Resourceful in production systems will depend on how much overhead is

considered acceptable, and that level can be reached by introducing adaptive decisions

of what to measure and when.

3.4 Understanding performance variability

So far, I have looked at the overheads imposed by either the proposed low-level probing

mechanisms or by Resourceful as a whole. However, an important part in evaluating

this framework lies in describing the provenance data it produces and in understanding

how that can be used in diagnosing performance problems.

In showing how Resourceful can be used in diagnosing performance variability is-

sues, I have picked lighttpd as the target example, because of the high importance

of diagnosing latencies for networked services. lighttpd is simple and mainly tar-

geted at serving static pages, but uses the same approaches as many high-performance

client-server architectures, in that it is based on event loops, does request processing in

multiple stages and multiplexes amongst them using epoll-like functions.

Therefore, lighttpd is representative of a larger class of services that are running

both on premise and in the cloud today, which makes the following analysis a typical

one. It also means that the methodology described here can be applied more widely.

3.4.1 Asynchronous resource consumption

At the beginning of the chapter, I have addressed a number of issues that separate

the way Resourceful does measurements from typical approaches used by the systems

86

(a) The importance of type 1 asynchronous effects in rela-
tion to time spent by lighttpd in the kernel. The x axis is
logarithmic.

0.0 0.5 1.0 1.5 2.0

server latency (cyc) 1e8

0

20000

40000

60000

80000

100000

lighttpd latency

poll_1000

poll_500

(b) Server-side latency under two application poll configu-
rations

Figure 3.15: The figures show how important are type 1 asynchronous effects to the latency of
lighttpd. The difference between the two poll configurations is related to timeouts: poll 1000
uses an epoll wait timeout of 1 second, while poll 500 reduces the timeout to half a second.
In this experiment, lighttpd serves 256K files.

community today. Amongst them, the discussion about asynchronous effects. A rea-

sonable question in this context is whether this asynchronous resource consumption

really matters, or whether its magnitude is small enough to be safely ignored.

For lighttpd, I will study type 1 asynchronous effects (from the perspective of

the measurement framework, the resource consumption happens before we know to

whom we should attribute it to). This is mainly introduced in lighttpd by the use of

epoll wait calls. For the same web server, type 2 effects are much reduced, because

the request processing, using sendfile on a non-blocking file descriptor is synchronous

from an application’s perspective (i.e if a call would block, the work is placed in an ap-

plication queue and considered on the next iteration of the event loop). This introduces

wait times, but the actual work is done synchronously, in a way which allows lighttpd

to signal to the measurement framework what request is being processed at every in-

stant. There is further asynchrony present in the TCP stack which is not tracked at this

stage. However, the measurements are consistent with lighttpd considering a request

complete as long as all buffers were handed for NIC transmission (data is queued for

sending in the NIC driver).

Figure 3.15 looks at both the impact of changing epoll wait configuration param-

eters on the final server-side latency and at the impact of the asynchronous effects as a

percentage of the time spent inside the kernel. The choice of considering the amount

of work done asynchronously in relation to the time spent in the kernel (and not to the

whole server-side latency) is due to epoll wait mainly doing work on the kernel side:

in order to detect meaningful relationships we will need to ignore unrelated application

side-effects on the latency, such as request queuing and multiplexing.

The poll 1000 configuration uses the default lighttpd epoll wait timeout of 1s,

87

while poll 500 halves it to 500ms.

In the scatter plot shown in Figure 3.15a we observe that for low-latency requests,

the impact of asynchronous wait times is insignificant: indeed, those requests were

likely to have been processed immediately without waiting a lot of time on the epoll -

wait. However, as the latency increases, the asynchronous effects clearly become domi-

nant, with tail-latency requests doing almost nothing else on the kernel side but waiting

on epoll.

On the other hand, we see that tweaking parameters which control the asyn-

chronous behaviour can have significant effects on the final distribution of latencies

(Figure 3.15b): decreasing the epoll wait timeout to half of its previous value slightly

reduces the 95th percentile but at the cost of increased lower latency percentiles. The

effect can be explained by considering that reducing the timeout will allow the progress

of other request stages instead of blocking a relatively long time for straggler requests.

However, the reduced timeout will also mean that other requests will have to pass

through more loops in the event loop until their socket file descriptor receives new

events.

Both observations lead to the conclusion that when doing per-activity measure-

ments, it is necessary to consider asynchronous effects if targeting a detailed expla-

nation of variations in latency. Ignoring or misattributing those effects to the wrong

requests would introduce sufficient noise as to make attribution and root cause analysis

significantly harder or even impossible.

3.4.2 Latency breakdowns

When talking about diagnosing the causes of latency, it makes little sense to analyse an

application well beyond the point where it reaches its maximum throughput. However,

the region just after reaching maximum throughput, typically showing a “knee” in the

latency curve, is interesting: Consider the case of lighttpd serving requests of a given

size to an increasing number of concurrent clients. After the point where the web server

reaches its maximum throughput, the latency will start increasing because of queuing

issues. In other words, requests will start waiting more and more on the completion of

other requests in the queue, although the location of such queuing is unclear (it could

be on the application side, the kernel side – tcp stack, network card drivers – or in a

busy router along the network path).

Resourceful can be trivially used to point out the place where such queuing hap-

pens (the bottleneck), if it is local to the operating system running the application (or,

by exclusion, pointing to the network as the culprit24): one only needs to look at

application-side request wait times, time spent in asynchronous wait (epoll) and time

24Resourceful can be extended to run on network equipment with sufficient computing power available,
but no such experiments have been performed so far.

88

(a) (b)

Figure 3.16: Single-worker lighttpd XR plots25 defining the testing regime. For latency, the
blue line represents the mean, while the shaded area covers values between the 25th and 75th

percentiles. The throughput is the average over 10000 requests

spent in the kernel’s various subsystems. With this information, developers can decide

whether the problem can be fixed by improving the way the server does multiplexing

amongst concurrent requests, by optimising tcp stack parameters (or using a different

tcp stack) or by modifying the kernel. Once such optimisations are performed and the

performance remains worse than parameters in the SLA, the only remaining solution is

spinning up new instances of the application and load balancing between them.

In this section, I will be focusing on a number of cases where the relationship be-

tween the latency distribution, application queuing and kernel-side operations is not

immediately known, so further single-thread performance gains are possible. This im-

plies I will not be interested in the multi-worker, load balanced case, but in diagnosing

latency variability for a single instance of lighttpd, which uses a single-threaded event-

loop for multiplexing amongst requests.

Furthermore, looking at the graphs in Figure 3.16, we will consider concurrency

levels just after the maximum throughput is reached, while latency enters it’s linear

growth phase. For subfigure (a), that would mean between 10 and 20 concurrent

connections, while for subfigure (b), it would be between 5 and 20. Generally, lighttpd

reaches peak single-thread throughput from a low number of concurrent users. In both

experiments, Resourceful is actively performing fine grained measurements; weighttp

is used to generate the concurrent workload and runs on a separate physical server one

hop away from the one running lighttpd. Below, I will show how Resourceful helps

in answering detailed questions related to changes in latency.

Figure 3.16 also shows that lighttpd manages to sustain peak throughput even

24An XR plot characterises the latency (R) and throughput (X) as functions of the concurrency level

89

0.0

0.1

0.2

0.3

0 10 20 30 40 50
residuals (% of lat)

de
ns

it
y

concurrent clients
10

20

30

(a) lighttpd serving 1K files

0

5

10

15

0.0 0.5 1.0 1.5 2.0
residuals (% of lat)

de
ns

it
y

concurrent clients
10

20

30

(b) lighttpd serving 100K files

Figure 3.17: Residual server-side latency not explained by Resourceful measurements (typically
representing work fully done in user-space by the web server) corresponding to the experiments
in Figure 3.16

under load-test conditions and when the Resourceful measurement framework is active

(while previously I have shown that the degradation compared to the baseline case is

minimal).

Are Resourceful measurements sufficient for providing latency breakdowns? Before

being able to trust the analysis results extracted from Resourceful measurements, it

is natural to ask whether the collected data explains enough of the measured server-

side latency to support the claim that it can be used in guiding system and application

optimisations.

For this, we consider, for the same experiments giving the data in Figure 3.16, how

much of the latency is not explained by Resourceful (in other words, the residuals), ex-

pressed as a percentage of the server-side latency. Figure 3.17 presents the distribution

of results.

When serving 1K files, Resourceful data explains more than 80% (20% residual)

most of the time. For the larger 100K requests the residual drops to under 2%. How-

ever, perhaps more importantly, as latency increases because of contention and queu-

ing, the measurements capture an increasing percentage of the final latency (above 20

concurrent connections, Resourceful data explains over 90% of the latency even in the

1K file case). In other words, the data not captured by Resourceful remains mostly

constant and does not significantly contribute to changes of the latency distribution

under contention. This means that in the important cases we want to cover we will

have all the data needed for determining the sources of variation in latency.

What-if scenarios I have made the claim that the design of Resourceful allows obtain-

ing estimates in “what-if” scenarios. The example picked to prove that point concerns

the experiments conducted in Figure 3.16:

90

What would the distribution of latency for 20 concurrent connections be if the

time each request waits for others (the wait time) is distributed in the same way

as it was when lighttpd served requests with 10 concurrent connections, while

keeping all other things fixed?

This allows us to explore what would happen to the final server-side latency distri-

bution under slightly different conditions than the ones experienced during measure-

ment. If by changing the distribution of wait times the latency distribution for 20

concurrent connections becomes more like the one for 10 concurrent connections, we

can conclude that wait times are an important factor that has triggered the observed

latency changes.

For now, I will make a number of simplifying assumptions regarding what mea-

surement variables we can target for such “what-if” investigations:

• the variable represents an additive component to the final latency distribution

(this is the case of wait times, time scheduled out, as well as cycles spent in

each kernel subsystem). A counter-example would be a variable representing the

number of L2 cache misses experienced during each request.

• the variable is independent of others and affects server latency directly: chang-

ing it will not trigger changes in other variables that also affect the final latency

distribution. A counter-example would be trying to ask what-if questions on

variables like schedule-out time: changes there would also modify the distribu-

tions of per-subsystem measurements, which in turn change the server latency

distribution.

Making inferences when the conditions above are not necessarily respected is dis-

cussed in more detail in Chapter 4. The gist is that non-independence needs to be

considered such that changes in the variable targeted by the “what-if” scenario are

propagated towards the related variables, and subsequently to the final distribution.

Regression techniques are therefore required for determining inter-variable relation-

ships.

In our case, the conditions are fulfilled by both the wait time and the per-subsystem

kernel cycle measurements. The data provided by Resourceful in fact defines an empir-

ical joint distribution between all measured variables. Considering the data stratified

per number of concurrent connections and limiting the analysis to 10 and 20 such

connections, we know the following distributions:

Pconcurrent 20(req size, lat, wait, async, k cyc...)

Pconcurrent 10(req size, lat, wait, async, k cyc...)
(3.1)

91

0e+00

2e−07

4e−07

6e−07

0e+00 1e+06 2e+06 3e+06 4e+06
latency (cycles)

de
ns

it
y

concurrent clients
20 estimated

20

(a) lighttpd serving 1K files

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

0e+00 1e+07 2e+07 3e+07 4e+07
latency (cycles)

de
ns

it
y

concurrent clients
20 estimated

20

(b) lighttpd serving 100K files

Figure 3.18: Estimating the accuracy of the proposed “what-if” method, for the case of a
known baseline. In this graph, we subtract the wait times from the server-side latencies
P (res) = P (lat − wait) knowing the exact joint distribution P(lat, wait). We then try to
add the same wait times back without using the joint distribution.

We also assume that

lat20 = wait20 + others20 (additive condition) and

P (wait20, others20) = P (wait20) · P (others20) (independence condition)

Here, the subscripts of individual variables represent the number of concurrent

connections under which the distribution was measured. From those, in the “what if”

scenario described above we want to estimate

Pest 20(req size20, lat
∗
20,wait10, async20, k cyc20...)

and in particular the Pest 20(lat
∗
20) marginal, where as a random variable,

lat∗20 = lat20 − wait20 + wait10 (3.2)

In terms of arithmetic operations between random variables, the first difference,

latnw = lat20 − wait20 can be exactly computed knowing the joint distributions in

eqn 3.1 (by pointwise differences between the latency and wait times measured for

each request).

Adding wait10 to latnw is the actual estimation step, which can be performed under

the independence assumption using a convolution similar to the one discussed in the

Methodology section when talking about determining overhead distributions:

P (lat∗20 = k) =

∞∑
i=−∞

P (latnw = i) · P (wait10 = k − i)

lat∗20 = latnw ∗ wait10

(3.3)

92

0e+00

1e−06

2e−06

3e−06

4e−06

0e+00 1e+06 2e+06 3e+06
latency (cycles)

de
ns

it
y

concurrent clients
20 what−if

10

20

(a) lighttpd serving 1K files

0e+00

1e−07

2e−07

3e−07

0e+00 1e+07 2e+07 3e+07
latency (cycles)

de
ns

it
y

concurrent clients
20 what−if

10

20

(b) lighttpd serving 100K files

Figure 3.19: What-if results: when considering a wait time distribution identical to the one
measured for 10 concurrent requests, the 20 concurrent requests latency (blue) distribution
approaches the one measured for concurrency 10 (green) – the red curve presents the estimation
results

For testing the precision of the estimation in our case, I first run the what-if exper-

iments by trying to add the wait20 back to the latency distribution in the estimation

step: lattest20 = lat20 − wait20 + wait20. The results are shown in Figure 3.18. For

lighttpd serving 1K files, the recovered distribution is very close to the original, while

for 100K files some “smoothing” takes place, but the overall shape of the distribution

is maintained very well, showing the feasibility of the proposed method.

Applying it in the actual what-if scenario described in this section yields the re-

sults in Figure 3.19. They show that most of the difference in latency between the

two cases can be attributed to application-side wait times: when considering requests

running with 20 concurrent connections but waiting the same times as 10, the result-

ing range of server-side latencies are very close to the 10 concurrent connections case.

This suggests the request multiplexing mechanism as a primary target for optimisation.

In particular, we haven’t reached the point of saturating the TCP stack or stressing

kernel-side buffers.

We can continue identically by picking other variables for explaining the remaining

differences. Furthermore, we can run similar what-if scenarios even with hypothetical

wait distributions that were never previously measured.

The main factor that has allowed this type of analysis to be performed is the exis-

tence of fine-grained, precise, per-request measurements about resource consumption.

What causes the variability of latency to increase in Figure 3.16a? Let’s consider the

partial plot of Resourceful measurements in Figure 3.20 (containing all cycle measure-

ments). On the x axis, the concurrency level increases as in Figure 3.16. We can notice

the following things:

1. variations in wait time closely track the ones in latency, confirming what we have

determined in the previous section.

93

2. lighttpd caches the small 1K files so no time is spent in the kernel block layer

(block l)

3. after 16 concurrent clients, more time is spent in the network, security and vfs

subsystems; variability also increases after this point. The number of concurrent

clients coincides with the beginning of a zone of constant throughput (so queuing

starts happening on the kernel side even if the wait times are the ones that are

dominating)

4. for 1K files, the resources spent asynchronously (waiting on epoll) is insignifi-

cant. This is caused by the requests being very small (the socket file descriptor

will mostly be available for reading/writing). Most outliers appear in the region

where throughput has not yet stabilised after reaching the maximum (up to 16

concurrent clients). This is yet another proof of queuing on the kernel side after

that point: most of the time epoll wait is called, it will return file descriptors

which have pending events.

5. ignoring the tail portions of the distributions, the time spent kernel-side stays

mostly constant for a wide set of concurrent connections

3.4.3 Conclusions

I have proposed a new approach in dealing with kernel-side measurements, starting

from efficient low-level probing (kamprobes) and building a per-activity, real-time re-

source consumption measurement framework. The overheads imposed by this sys-

tem have been evaluated using both microbenchmarks and a real-world application

(lighttpd). In realistic scenarios, the expected increases in latency caused by Resource-

ful are between 5 and 12%, depending on the number of system calls executed per

second by the targeted application. Further optimisations are available. The observed

degradation in throughput is insignificant.

In terms of utility, I have shown that the data allows both looking at the elements

that introduce variability in the system (enabling a targeting of optimisation efforts).

Furthermore, developers are able to assess the behaviour of the system under new

conditions by exploring “what-if” scenarios. Strategies for enabling such analysis for

a larger class of systems and situations is discussed next.

94

Figure 3.20: Resourceful measurement details, for lighttpd serving 1K files. The following
distributions are displayed as boxplots for each concurrency level from 1 to 40: lat - server side
latency, wait – wait time, cyc – cycles spent inside the kernel, asyn – cycles consumed during
epoll waits, block l – cycles spent in the block layer subsystem, vfs – cycles spent in the virtual
filesystem subsystem, net – cycles spent in the network subsystem, sec – cycles spent in the
security subsystem.

95

96

“The first principle is that you must not fool yourself and

you are the easiest person to fool.”

— Richard Feynman

4
Soroban: A provenance-based attribution

framework1

IN THE PREVIOUS CHAPTER I have presented a number of low-level mechanisms that

enable the collection of fine-grained provenance for different system and application

properties (latency, resource consumption, errors). The aim was to explain unexpected

variations of such properties taking into account OS-level resource usage and multi-

plexing. However, there is a need for defining clear methods for analysing and using

this data, especially if we’re targeting semi-automated diagnosis scenarios or systems

that might change their behaviour based on such measurements. How would one de-

sign and implement those systems?

This chapter brings together the Resourceful work for obtaining data in the con-

text of application activities with machine learning techniques in order to show how

provenance-based computing could look like, discussing both system modelling and

issue attribution based on fine-grained measurements. The main question remains one

of understanding how provenance data can be combined with high-level, local user

knowledge in order to make progress towards solving the use-cases described in Chap-

ter 3.

The practical goal being considered is finding meaningful ways of comparing the

behaviour of an application in two different settings: it could be a comparison between

1An early outline of the work presented here has been published in HotCloud 2015 [Lucian-3], fo-
cusing on latency attribution in virtualized environments. The paper has been joint work with James
Snee and Oliver R.A. Chick .

97

http://orcid.org/0000-0002-6889-8561

a program running on bare metal machines and it running inside a virtualized environ-

ment, alongside competing workloads; it could be the same software running on two

different Linux kernel versions, or it running under different configuration settings.

Similarly, comparisons could be done between normal states and situations like limited

bandwidth, unresponsive communication partners, etc. Beyond measuring changes in

behaviour triggered by conditions like the ones above, it is important to be able to

attribute their impact on particular sub-components in our system. For instance, we

want to be able to determine that “for this request with a high latency, the virtual-

ization layer has imposed a 10ms overhead”. Having similar cost breakdowns across

multiple components should allow us to make informed operational decisions, as well

as allowing for typical optimisation of bottlenecks. It is a case of knowing who to

blame when the application does not behave according to expectations.

In the case of virtualization, the issue goes even further: customers should be able

measure whether the characteristics of the virtualized infrastructure running their ap-

plications have met service level agreements (SLAs). Currently, most providers define

such SLAs in a very coarse-grained manner, typically referring to uptime, bandwidth

or IOPS. However, opportunities exist for both sides if finer-grained prioritisation and

resource guarantees would be available: customers that want to build complex ap-

plications on top of existing cloud infrastructure might be willing to pay extra for

guarantees at the level of individual requests or classes of network traffic. Perhaps an

application with a low average number of IO operations per second (IOPS) but with

bursty characteristics will want guarantees about the service levels during such bursts,

while it might accept slight degradation at other times. Others will be interested in

memory bandwidth or NUMA placement guarantees.

If an application has components which are latency sensitive (i.e. state replication),

or would like to offer more guarantees for business-critical clients, developers will want

the ability to negotiate different SLAs for particular connections, cpu computations or

disk transactions. Furthermore, they might want to set dynamic policies while also

being able to clearly estimate predicted expenses. This type of fine-grained SLAs will

require more transparency from the service provider, as well as good measurement

tools on the client side.

As an example, the tools presented in this chapter will allow clients to determine

how much of the latency of a connection can be attributed to slowdowns in the vir-

tualization layer. Similarly, cloud providers have the incentive of running the same

measurement tools to prove that eventual slowdowns were caused by application logic

or failure modes. Some of those might have in turn been triggered by infrastructure

issues, etc. Here, the provenance nature of data captured by systems such as Resource-

ful becomes clear: drilling down for causes and being able to perform attribution of

consumed resources are just two types of analysis enabled by the same underlying data.

98

Although most of the work here is targeted at supporting those scenarios in prac-

tice, it is also important to develop the theoretical frameworks that can provide a

rigorous setting for discussing about measurements, causality and provenance (as well

as diagnosis in general). For example, such a theory would allow an understanding of:

• efficiency: what should be measured and when in order to incur minimum over-

head but to maximise the information obtained from the system

• inferencing: what kind of predictions or what-if scenarios are possible given the

current knowledge about the behaviour of the system

• control: determining what parts of the system need to change and how in order

to achieve certain performance or cost targets

• limitations: what questions can’t be answered with the current amount of recorded

data

In this area, the use and extension2 of Structural Causal Models (SCM), as described

by Judea Pearl [112] provides the required tools for dealing with issues like the ones

described above. While the development of statistical theory goes beyond the scope of

this thesis, we will focus on a methodology for measurement that can be transposed in

causal language.

4.1 Goals, approach and alternatives

The move towards cloud computing implies a transition to running most services on

shared infrastructures, with less control over unwanted interferences and the resulting

performance characteristics. The use of virtualization and hypervisors in particular

introduces additional, un-coordinated levels of indirection with respect to process and

VM scheduling. While the current mindset in the industry is that virtualization can

provide strong isolation guarantees in terms of CPU and memory, one must understand

this in the sense that each process in a set of collocated applications becomes slower by

some degree when compared to its bare-metal performance3. In environments where

the number of tenants changes dynamically, there are no guarantees that this slowdown

is uniform. We must thus consider how it might affect the tail-end of service times or

the end-to-end throughput: the performance is clearly influenced by the overall system

state over which applications know nothing about (number of other services running

2This is joint work with Philipp Geiger, from the Max Plank Institute for Intelligent Systems in
Tübingen. Gathering experimental data and providing domain-specific knowledge in this space have
been only my responsibility.

3in other words, isolation here means protection against unfair distribution of resources rather than
against performance degradation

99

on the same physical host, scheduler time slices or generally the contention on shared

resources).

Despite previous work on improving scheduling in order to provide more isolation

guarantees [36, 130], the argument above points towards the need of tools that can

pinpoint the reasons of performance deviations at the level of individual application

activities (one database query, responding to one http request etc.). In particular, such

tools should help in ascertaining whether the observed anomalies are caused by the

running service (e.g. garbage collection at application level) or if they are due to the

external environment (e.g. CPU or IO starvation). This maps directly to the goal

stated at the beginning of the chapter, of comparing different situations in which an

application executes.

Current methods of characterising the behaviour of applications in a shared en-

vironment are focused on OS-wide measurements (perf, iotop), and rely either on

benchmarking the VM and the application itself, or on continuous monitoring of OS

and process metrics.

Benchmarks are not typically representative of production workloads [50, 126] and

extracting useful information from them is challenging: no benchmark will simulate

real world events such as VM creation, boot storms or major changes in load for

particular tenants. Furthermore, benchmarks themselves do not provide optimisation

routes or root cause analysis without significant expert knowledge and incremental

trial and error.

On the other hand, root cause diagnosis systems based on monitoring data [107,

106, 88] have so far ignored the difficulties of trying to dissociate the resources con-

sumed for performing an action from other activities happening concurrently. The need

to do so, especially in regards to event-loop based programs, has been known since the

idea of resource containers [8] was proposed. Without taking this into account, as

evidenced in Chapter 3, one ends up measuring variables with possible hidden con-

founders. Thus, errors like not distinguishing correlation from causation, attributing

anomalies to the wrong cause and ultimately making suboptimal resource allocation

decisions become more likely. Because of this, using queuing models on top of data at

the incorrect granularity, like proposed in CloudScope [34] can be unreliable in prac-

tice, even if there are instances where such an analysis gives the correct results.

With Soroban I propose a structured approach, in four stages (Figure 4.1):

1. Collecting fine-grained kernel level measurements that describe the resources con-

sumed by application-level activities, using Resourceful.

2. Outlining a causal graph capturing the beliefs of developers/architects in regards

to the existence of relationships between measurements or (more importantly)

lack thereof. This guides the subsequent analysis, but it is accepted that the

resulting graph could be incomplete or partially incorrect.

100

Resourceful data Causal graph Training phase

state 1 state 2

feature vector from state 2

(m1, m2, m3,)

ground truth difference

(state2 - state1)

regression model

Attribution phase

new measurement

(n1, n2, n3,)

prediction

m1
m2

m4

m3

m5

Figure 4.1: A general structure for Soroban inferences. In this case, we want to understand
and attribute variations in one metric (m4) between the application in two states of the runtime
environment (state 1 vs state 2). As an example, state 1 could be the application running on
bare metal while state 2 could be the application running inside a virtualized environment. For
each state, we gather the same type of measurements, as described by the causal graph. In the
training phase, we build a regression model given a measurement feature vector and the ground
truth difference of m4 between the two states. The data is stratified on random variables that
have no parents in the graph (activity properties). Later on, given the regression model and
new measurements in the system, we can predict how much of m4 is caused by factors in state
2 relative to state 1.

3. A training phase where we establish the ground truth in regards to the perfor-

mance impact of making changes to the application or to the environment in

which it runs. For example, we will run a web server under multiple client con-

currencies, request sizes, number of concurrent VMs, competing applications,

and under multiple configuration options. The training phase needs to exer-

cise the system sufficiently in terms of independent variables in the graph (nodes

without parents) for being able to learn typical behaviour. In situations where the

available search space of options is too large, sampling techniques will need to

be employed. Alternatively, one might choose to learn from previous production

workloads or operation conditions.

Assume that we want to understand the influence of running lighttpd under

virtualization, when compared to the bare-metal case described in Chapter 3.

We will run the web server in both cases (bare-metal and virtualization with in-

creasing number of collocated VMs). For each of the per-request measurements

realised under virtualization, we compute a ground truth metric representing the

performance degradation4 when compared to the bare metal case, for “equiva-

lent” requests. A regression can now be done for learning the nature of the re-

lationship between the set of measurements for a given request (m1,m2,m3, ...)

and the ground truth Gt. The resulting model can be then used in the next stage:

4. Attribution: the application can now be run in the target environment (in the

cloud). For each application activity (responding to the http request), a prediction

can be made with respect to how much of the observed performance variation

is caused by the environment (virtualization) and how much is due to factors

4for example, latency or throughput

101

intrinsic to the application (high web server load).

The underlying assumption is that the fine-grained measurements will capture the

aspects that vary differently between the considered states (i.e bare-metal/virtualization),

making it possible to recover an estimate of the metric computed as “ground truth” dif-

ference. This metric could be as simple as a categorical classification (i.e “high cloud

contention” vs “low contention due to the cloud”), it could represent parameters of

the environment (number of concurrent vms) or could lead to exact estimates (i.e. how

much of the latency of a given request is caused by the hypervisor when running under

virtualization).

4.2 Design and implementation

4.2.1 Measurements and causal graphs

Building a causal graph for variables measured in a given system is very useful in encod-

ing expert knowledge about the way the system operates, and an essential component

of the analysis methodology I propose. The causal graph makes explicit the assump-

tions of an expert about the relationships that exist between measured variables.

However, due to system complexity, it might be challenging to obtain complete

and accurate causal graphs.graph consistency
checking

The existence of further causal relations, as well as pos-

sible spurious relations in the graph, needs to be checked against collected data. The

graph can start out from the relationships determined based on provenance, and can

be then augmented independently by people with in-depth knowledge about each layer

(application, kernel, hypervisor, networking, etc). In this way, the graph allows the

accumulation of local knowledge about how measured values are related to each other.

Of course, the description above does not cover the initial definition of such a casual

graph. Essentially, this represents a modelling task as any other and should be done

by experts in the various subsystems being measured. If an expert in virtualization

(for example) has defined a subgraph modelling relationships between measurements

taken inside a hypervisor, those can be linked as influencers in other subgraphs (for

example, defining the behaviour of an application). The application level experts need

to be aware of which of their measurements are affected by hypervisor-level variables

and mark those influences explicitly. Variables that should be sums of their immediate

ancestors in the graph but are also measured independently should be used as check-

points to determine what percentage of the measured value can be explained using the

causal graph.

As with other models, this suggest an iterative refinement model rather than being

able to automatically determine (except for simple situations) the causality graph. In

order to perform any attribution analysis, each set of application collected metrics

102

will need to be included in a (possibly new) causality graph. However, parts of other

causality graphs that define the relationships between external metrics (i.e metrics taken

from a hypervisor, I/O subsystem or from the kernel scheduler) can be reused. When

reusing part of a graph B in new one, A, experts should ask the following question for

each of the nodes in B: “which of the metrics in A is directly changed if this node in B

changes?”. Then, edges need to be added from that node in B to all of the influenced

nodes in A.

io_lat

block_size concurrent_requests

+
k_cyc

usr_sch_out

+

k_sch_out

+

usr_cyc
+

fio measurements

measured

inferred

causal

+ causal and additive

+ known causal function

type

Figure 4.2: Causal graph for fio measurements Each node represents a random variable. The
lack of an arrow between two variables means there is no direct causal relationship between
them. Arrows that have a plus sign near them show that the parent is an additive component of
the child (if the parent would be smaller by x, the child reduces its value by the same amount).
Encircled nodes (i.e. ⊕) describe known causal relations: ⊕ means the child variable is the sum
of all variables incident to the circle.

To make the discussion concrete, I will start from a relatively simple example de-

picting the causal graphs for some of the Resourceful measurements done while run-

ning the fio I/O benchmarking tool. This graph is shown in Figure 4.2. For each value

or application property that we measure, we need to decide what other values does it

directly influence. In this particular case, our modelling considers that the block size

and the type (read/write) of the I/O request do not directly influence the latency of that

request. Instead, they influence the time spent by the application in userspace (usr cyc),

the time spent in the kernel (k cyc) and the corresponding preemption times: For ex-

ample, a larger I/O request could lead to the the executing code path being preempted

for a longer time while the disk is fetching the data, either in userspace (usr sch out)

or inside the kernel (k sch out).

We have also made the decision that whatever latency is accumulated during pre-

emption is automatically added to the time spent in kernel and user-space. Further-

more, we’ve predict that the final latency should be the sum of times spent, k cyc+usr -

103

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

0e+00

1e+07

2e+07

3e+07

4e+07

0 250000 500000 750000 1000000

io_lat

bl
oc

k_
si

ze io_type
●

●

read

write

(a) fio normal correlation results for indirectly con-
nected variables

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●●●

● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●●

●

●

●

●
● ●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
● ● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●
●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00

1e+05

2e+05

3e+05

0 250000 500000 750000 1000000

io_lat − k_sch_out

bl
oc

k_
si

ze io_type
●

●

read

write

(b) after considering relations in the causality graph

Figure 4.3: Causality graph sanity check: testing for the existence of stronger correlations after
using information from the graph

cyc.

A direct link is added between two nodes only if the value of the parent has a causal

influence on the value of the child. Causality in this context is understood to express

the fact that intervening on the value of parent nodes affects the value of the child.

The immediate parents of a node X are taken to be the only random variables (in the

model) which directly influence the values of by X. Both direct and indirect (path)

connections are important: for example, in the graph k sch out is connected to k cyc

directly: this states that k cyc can vary because of k sch out even if all other variables

stay fixed; on the other hand, the effect of indirect arrows can be eliminated through

interventions: concurrent requests has an indirect influence on k cyc, but the graph

tells us that this influence can be completely removed if we intervene in the system

by fixing k sch out and usr sch out (for example, by running the application on an

isolated CPU).

Of course, simply the fact that we’ve hypothesized such relationships doesn’t make

them true. However, based on them we can test a series of predictions: for example,

the fact that by subtracting k sch out from io lat we should see a stronger relation

between the block size and the final latency (io lat), as it is just the block size that

now keeps influencing the latency through k cyc.

I test this by running a fio benchmark varying the block size from 4K to 1Mb, with

a mix of 30% random writes and 70% random reads, using the psync backend config-

ured to do DIRECT IO. Four threads are doing I/O simultaneously and reading/writing

1Gb each. The results can be seen in Figure 4.3: it is very difficult to explain the rela-

tionship between block size and latency by looking at the data directly (a). However,

we use our casual graph-based prediction and discover a stronger correlation pattern

(b). We should interpret it in terms of explaining the remaining contributions to la-

tency after eliminating a significant part of scheduler influence. For each block size,

104

a “preferred” latency range exists, allowing us to make probabilistic predictions with

respect to the final latency even if the scheduler behaviour changes.

For example, let us assume that because of an optimisation, we manage to shift the

latency diribution of k sch out by 5% to the left, across all percentiles. That means

that (for example) a value that was in the 0.25th percentile is now in the 0.2th. The

following R script describes the exact data transformation, implementing a percentile -

to percentile difference between the distribution and its shifted variant:

1 #find out the corresponding percentile for every data item

2 data$k_sch_out_percentiles <-ecdf(data$k_sch_out)(data$k_sch_out)

3

4 #shift percentiles by 5% to the left

5 data$k_sch_out_new_percentiles <-data$k_sch_out_percentiles - 0.05

6

7 # normalize data; more complicated estimates can be applied

8 data <-subset(data , data$k_sch_out_new_percentiles > 0)

9

10 data$k_sch_out_new <-quantile(data$k_sch_out ,

11 data$k_sch_out_new_percentiles)

Listing 4.1: Quantile shift operations (R script)

After running those operations, we have obtained a transformed measurement vari-

able, k sch out new, which we can add (according to the causal graph) back to the

residual latency that was being explained in Figure 4.3(b).

For each data point, we are effectively computing (io lat - k sch out) + k sch -

out new and we thus obtain the overall I/O latency distribution under the new hypotet-

ical scenario. The result is shown in Figure 4.4. Please note that this is not simply a

shift of the original latency distribution.

If no clear relationship can be determined numerically between two elements that

have been connected by an expert in the graph, a number of possibilities should be

taken into account:

• The model is to coarse-grained and is missing one or more important variables;

the connection is not direct but mediated by something else;

• The connection is indirect through some other variable already in the graph;

• The domain expert’s assessment regarding the causal relationship was wrong,

and the model should be refined by removing the link

Once some confidence is built in the correctness of a particular model, we can also

understand the types of information that we would not be able to extract from it. For

105

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

6.0e+06 8.0e+06 1.0e+07 1.2e+07 1.4e+07

io_lat (ns)

de
ns

ity

distributions

latency

latency_new

Figure 4.4: fio: original latency distribution (latency), and estimate after the schedule out time
distribution is shifted by 5% (latency new)

example, consider we run a second experiment with a fixed block size, performing just

random writes instead of a mix of reads and writes. Based on the constructed causal

graph, we know we will not be able to attribute differences in the latency distribution

between this experiment and the original one to the block size or type of operation.

This is because both those factors influence the exact same downstream nodes: we

know there are no measurements allowing us to make the distinction between their

contributions.

4.2.2 Transferring knowledge across causal graphs

Let’s now consider a second example, which will be presented in detail for exemplifying

a more complex attribution strategy. The corresponding causal graph is presented in

Figure 4.5. It was built based on a detailed understanding of OS and Xen schedulers

and their possible impact on a given workload.

Looking at the left side, titled “Local measurements”, it’s easy to see it is quite

similar with the graph we had built for fio. In fact, that graph was describing a

common pattern for the latency of an application activity that is being influenced by

the OS scheduler. The wait and conc (concurrency) variables have been added because

unlike fio, lighttpd multiplexes its application-level activities based on an event loop.

A similar pattern should appear in any event-loop based application.

This means that it is possible, at least partially, to take and combine existing sub-

graphs when creating a causal graph for a given application and set of measurements.

4.2.3 The lighttpd causal graph

For allowing a better understanding of what is measured for experiments in this chap-

ter, I’m going to describe the meaning of each variable in the graph; the nodes sur-

rounded by red rectangles are determined from direct measurements. For requests sent

by test clients to a lighttpd server, we will have access to the joint distribution of

106

srv_lat

concurrent_vm_count
req_size local_load

xen_block# xen_yield#

xen_sch_out_cyc

+
k_cyc

usr_sch_out

conc

wait

+

usr_xen_outk_xen_outk_sch_out

+

usr_cyc
+

Local measurements Hypervisor measurements

measured

inferred

causal

+ causal and additive

+ known causal function

xen_sch_out#
+ +

Figure 4.5: Causal graph for lighttpd measurements inside virtualized environment5. Each
node represents a random variable. All the variables measured inside the VM using Resourceful
are on the left side. On the right side, the graph contains variables representing hypervisor
measurements. The legend is identical to the one in Figure 4.2

the random variables in the graph, representing the resources consumed for preparing

responses. At times, it might be sufficient to measure a fraction of those variables in

order to explain variations in application behaviour. However, we start with a max-

imal approach in order to understand what information is useful and needed (I also

consider variable selection strategies based on mutual information).

req size the size of the file requested by the client. In experiments, this is either kept

fixed to a representative value (10K, 100K or 256K) or varied according to a

given distribution. In production workloads, this would be decided by the distri-

bution of client requests.

local load within the VM running lighttpd (henceforth called “target VM”), this

variable stands in for any resource-consumption activity that other applications

besides lighttpd execute. This could be a periodic backup task doing IO, an

application server running alongside the web server, or a database server. In

experiments, local load is a variable describing how many load-generating pro-

cesses (stress) are run alongside lighttpd. This was picked (instead of a more

accurate representation of load) in order to limit the amount of information re-

quired when training a machine learning model, and help with its generalisation

5The graph has passed through multiple iterations, and discussions with Philipp Geiger have con-
tributed to its final form.

107

properties

conc concurrency level, counts how many requests were concurrent with the one for

which the value is measured; This will either be constant when using ab as a test

client, or vary according to the arrival rate distribution when using weighttpd

k sch out number of cycles accumulated while the kernel was preempted by another

local task (those are switches that happen during system calls) for a given request

usr sch out number of cycles accumulated while lighttpd was scheduled out (while

running in user-space) during the processing of a given request

k cyc number of cycles spent in kernel mode for serving the request, as measured by

Resourceful. k cyc breakdowns for times spent in particular kernel subsystems

are available but have not been represented to avoid cluttering the graph

wait cycles spent by a request while waiting for processing of other requests. This hap-

pens because the response is built in multiple stages, and those are multiplexed by

the control loop. This is inferred by substracting the measured active time (time

when we know processing has been done for a request) from the final latency

(srv lat)

usr cyc cycles spent in user mode for serving the request

srv lat the server-side latency of the request, measured from the time of the socket

accept until lighttpd considers the request sent. Measured in cycles.

concurrent vm count number of other VMs running concurrently with the lighttpd

VM on the same physical server. As a function of the running experiment, each

such VM will run various load-generating tasks (using the same stress process as

local load) for generating realistic workload interactions between VMs. If dif-

ferent from stress, experiments will explicitly mention what workload is being

executed on the other VMs.

xen block# number of times the target VM has been scheduled out by XEN due to a

block. For XEN, a block means the VM will not be re-scheduled again until at

least one of the events for which the VM waits takes place.

xen yield# number of times the target VM has been scheduled out by XEN due to

a yield. For XEN, a yield means the kernel running inside the VM has decided

giving up its time slice as it is waiting for a condition or event before being able

to make progress.

xen sch out# number of times the target VM has been scheduled out by XEN, irre-

spective of cause (block, yield, expiration of time slice)

108

k xen out cycles the VM is scheduled out while its execution was in kernel mode,

executing a system call from lighttpd.

usr xen out cycles the VM is scheduled out while execution was in user mode, running

lighttpd. Here, lighttpd might have been processing either the target request

or do work for one of the other concurrent requests on which the target request

was waiting.

xen sch out cyc total number of cycles the VM has been scheduled out during the

srv lat time.

The particular graph described by the variables above is geared towards under-

standing latency variations due to workload interference caused by CPU time spent

executing competing tasks. However, the model can be easily augmented to cater for

other types of interference (i.e. memory bandwidth or IO). It is simply a matter of

adding such variables to the graph and configuring Resourceful to collect the corre-

sponding data.

Also, as mentioned in the previous section, we shall stratify our experimental data

on the following independent variables: req size, local load, conc and concurrent -

vm count6. Those define fundamental characteristics of each request and it wouldn’t

make sense to compare data which has different values for those variables in the train-

ing phase.

4.2.4 Xen changes7

Capturing the metrics present on the right side of the causal graph in Figure 4.5 (Hy-

pervisor measurements) has required modifying the Xen hypervisor. In particular, the

required changes were:

1. sharing an extra memory page between Xen and each VM (domain in Xen termi-

nology). This page is filled by the hypervisor scheduler with details about when

a domain is scheduled in/out and what has triggered that action (expiration of

time slice, kernel request to block, kernel request to yield)

2. organising the scheduling events into a circular FIFO buffer, with the hypervisor

maintaining the head (write end)8

6xen block# and xen yield# are also shown as independent in this graph. However, this is just because
we have omitted some arrows in order to limit clutter. In practice, req size, local load, conc will
influence them.

7Oliver R.A. Chick has implemented the first version of Xen data sharing, mapping extra memory
pages from the hypervisor into each domain. I have done further optimisations, moving from a queue
data structure to counter snapshots and have implemented the Resourceful-side token integration.

8this has been optimised to use simple counter snapshots instead of a circular buffer of individual
events, but the underlying mechanism is simpler to explain when considering the buffer

109

http://orcid.org/0000-0002-6889-8561

3. allowing the domain(s) running Resourceful to maintain multiple tails (read ends)

into the same shared buffer. In particular, as I explain below, each activity token

maintains it’s own tail pointer.

The main reason why coordination is required between the hypervisor and the VM-

side Resourceful measurements is the fact that a given schedule-out event may affect

multiple activities in the VM, even if those activities are not active at the time when the

event happened. Taking the example of lighttpd multiplexing between various stages

of two requests, with a Xen schedule-out event happening while processing request

1: even if the current active token is the one for request 1, the time the VM spends

scheduled-out also contributes to increasing the latency of request 2. In other words,

all concurrent requests need to account for this schedule-out event.

We implement this by allowing each token to maintain its own tail pointer into the

Xen event buffer. Then, whenever the token is activated as well as on subsystem entry

and exit we need to consume all the events between the token-maintained tail and the

current Xen head pointer. The measurements are aggregated on the kernel side and

added to the corresponding subsystem. A special subsystem, XEN Userspace exists for

holding the Xen events that have happened between application made system calls (in

user space)9.

Of course, these changes would not be available within existent cloud infrastruc-

tures. However, modifying the Xen hypervisor has two complementary justifications:

firstly, we want to understand what types of information would be useful if exposed

from the hypervisor side; if I can prove that even small pieces of information (such as

how much time your own VMs have been scheduled out and why) allow application

developers to make significant progress in understanding the behaviour of their appli-

cation, then cloud providers might be convinced that being more transparent about

such metrics is beneficial. Secondly, I also want to understand whether the information

can be simply inferred from the client side. In that case, Soroban could work in un-

modified environments and deduce the hypervisor metrics based on previous regression

models.

An identical mechanism has been implemented by James Snee for measuring sched-

ule in/out operations for Docker containers (this time, within a single Linux kernel).

This proves that the strategy is general enough to be applied across virtualization solu-

tions with very little changes in design.

4.2.5 Processing and plotting scripts

At the moment, Soroban predictions are not fully integrated into the Resourceful API.

Therefore, applications can’t directly make use of the diagnosis results in real time.

9this is why the causal graph contains both the k xen out and usr xen out variables

110

However, for research purposes I have developed a set of python scripts that select the

variables required for building a regression model, run the machine learning process

(using scikit-learn) and allow for offline predictions on new datasets. Together with

them, I have developed a set of plotting scripts (both in python and R) that have been

used for creating all the figures in this chapter.

In principle, the prediction phase is fast enough to be run alongside slower requests

or on a separate thread in the web server, informing the choice of multiplexing param-

eters (timeout time, priority) as well as scheduling decisions. However, experiments

concerning those aspects are an area of future research.

4.3 Machine learning with provenance data

4.3.1 Variable selection for latency attribution

If one would simply plug all the measurements done by Resourceful into the regression

model that is built in the training phase, unnecessary noise would also be added, re-

ducing its predictive power. This is because certain variables might have nothing to do

with the values we want to predict (i.e predicting the change in latency under virtual-

ization). Including them when building the model is undesirable because the regression

might pick up spurious correlations, so we first need to decide on a strategy for variable

selection.

This is challenging because of two factors: (i) the nature of the distributions of

the measured variables (non-normal, multi-modal) and their relationships (sometimes

nonlinear), and (ii) the fact that such relationships might be hidden by other variables.

The first issue is problematic because it makes using correlation coefficients a bad

measure of the relationship between two variables: we don’t expect all relationships to

be linear, and the inherent variability and measurement noise in certain variables would

artificially reduce the value of the correlation coefficient even when strong underlying

relationships exist. For an example of non-linear (and non-functional) relationships, it

is sufficient to look at real data in Figure 4.6 (some variable names were abbreviated for

space reasons10): consider the pairs (k cyc ~ sch out) and all relationships of x bl with

other variables. In the case of (k cyc ~ sch out), the scatter plot shows a composition

of multiple functions (the effects of individual kernel subsystem measurements that

have been aggregated into k cyc).

To overcome the limitations of correlation coefficients, I propose the use of mutual

information, a measure based on entropy.

When considering two variables X and Y , the mutual information, I(X;Y) tells us

how much knowing one of the variables is reducing the uncertainty about the other.

10In the figure, some variable names have been abbreviated for space reasons: lat = srv lat, work lat =
lat - wait, sch out = k sch out + usr sched out, xen out = xen sch out cyc, x bl = xen block#

111

Figure 4.6: Matrix representing a lighttpd measurement “slice”. The measurements were
done while serving 256K files, with 18 other concurrent VMs running on the same server and
running stress with 1 CPU worker and 1 IO worker. Above the diagonal, a hex-binned version
of the scatter plot is shown, with color representing density from low (blue) to high (red) on a
logarithmic scale. The diagonal shows the marginal density plots of each variable, together with
the estimated entropy of that variable. Under the diagonal I plot both the mutual information
between the variables (in bits, large font) and the correlation coefficient (small) for comparison.
The color of the cells under the diagonal is in accordance to the value of mutual information,
with darker colors representing stronger relationships. Entropies and mutual information val-
ues followed by * have been computed using a plugin estimator because of the failure of the
KNN method to converge, and might have larger bias.

If X and Y are independent, knowing Y does not give any additional information

about X and thus their mutual information is zero. At the other extreme, if X is

a deterministic function of Y , all information contained in X is shared with Y (the

variable contains information that is in some sense redundant if X is known). In this

case, the mutual information is the same as the uncertainty contained in X alone (the

112

entropy of X).

The mutual information can be expressed mathematically as (we use H(X) to de-

note the entropy of X):

I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X)
(4.1)

However, entropy and implicitly mutual information can be hard to estimate accu-

rately for arbitrary datasets. This is why in terms of implementation I use a method of

determining mutual information based on k-nearest-neighbours (KNN), which shows

minimal bias [81] instead of applying equation 4.1 directly.

When making the selection of variables, we’re not necessarily interested in the ab-

solute value of mutual information; I propose using it as a ranking method for picking

the ’top-k’ interesting variables (with k set by a human user). For the example in Fig-

ure 4.6, when diagnosing latency we can look at the first column to see that wait and

xen out are primary candidates for inclusion into our model (the next one, at consid-

erable distance, would be sch out).

However, this first-pass in terms of selecting variables is not sufficient, because

of the second issue (variables that hide the presence of relationships amongst other

variables). Latency in particular is susceptible to this kind of problem because it is

essentially generated by an additive process (each component in the system can add

latency but not remove some). Going back to the causal graph, I have represented this

type of relationships with a ’+’ annotation on various arrows and graph nodes.

To understand why an additive process poses problems in terms of statistical anal-

ysis, we can look at Figure 4.6 for the lat, wait and k cyc variables. At first, the

relationship between lat and k cyc seems to be a very weak one (I = 0.088). The

scatter plot also looks inconclusive. However, the causal graph defines wait as an ad-

ditive component of lat. This means we can precisely remove its influence on lat by

subtraction, using the fact that we know their joint distribution (this is the work lat

variable). After the subtraction, work lat has a very strong relationship with k cyc

(I = 3.9), while others also increase their mutual information with the target variable

(sch out goes from I = 0.03 to 0.18).

Thus my proposal for variable selection is an iterative one:

1. select the top-k variables that have most direct influence on the target variable

(latency), based on mutual information

2. if any of the selected variables have a purely additive contribution to the variable

we’re trying to explain, subtract them out, yielding a new variable R (this is

work lat = lat – wait in our example)

3. continue the selection process iteratively on R.

113

4. consider and select categorical or count variables that are parents of currently se-

lected variables. Even though they might have a poor correlation with the target

variable (taking x bl as an example), they will likely help in distinguishing fea-

tures between various regions within scatter plots (see Figure 4.11 for an example

in the evaluation section)

A way of improving the variable selection process described above is to also con-

sider removing non-additive contributions in step 2. Doing this is possible by com-

puting conditional mutual information: In the causal graph, conditioning should be

interpreted as a way of blocking the influence of certain arrows. For example, if we

want to better understand the relationship between k sch out and k cyc, we could con-

dition on k xen out for a given req size. In this way, we eliminate all the influence that

parents of the k cyc node exert, except for the one coming from k sch out. Computing

the conditional mutual information follows the same line as equation 4.1:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) (4.2)

The variable selection strategy can also be used to perform sanity checks on the

proposed causal graph: for example, if a strong direct relationship can be seen in terms

of mutual information but no corresponding arrow exists in the graph, an expert needs

to decide whether it makes sense to add the causal relationship or not, updating the

graph accordingly.

The following is another example of performing checks on the graph: in the figure,

xen out seems to influence lat and wait directly (the graph confirms this, as we have

ignored the unmeasured variable usr cyc). After subtracting wait, the information

added by xen out is reduced considerably (in the matrix plot, this sown at (work lat

~ xen out)). This is consistent with the graph, assuming the contribution of k xen out

to k cyc is small (this is true given the measurements). We conclude that the graph in

Figure 4.5 passes a summary consistency check.

4.3.2 Attributing latency - computing ground truth metrics

Comparing the performance evolution of an application under different conditions re-

quires picking one or more “target” metrics that are useful in attribution and diagnosis.

In order to keep the discussion concrete, I will continue the running example of com-

paring lighttpd running on bare metal versus under virtualization and trying to blame

variations in latency either on the application or on the hypervisor. However, the same

discussion would apply for an application running under two configuration setups, on

two different kernel versions (to determine performance regressions) etc.

114

Keeping in mind that the ground-truth metric we compute is the same as the one

we’ll be able to predict for each request, we have a number of reasonable choices:

• Picking an existing variable which we know we won’t be able to measure in

the target environment (the cloud), or that is expensive to measure there. An

example of this would be the concurrent vm count variable: this would allow

an application to predict, for each request it processes, how many VMs were

running concurrently on the same physical server. The information could help,

for example, in understanding whether the load-balancing groups of the cloud

provider are placing client VMs on physical servers with widely different loads.

• Deriving a new per-request variable representing values of interest. When per-

forming the derivation, we can use knowledge about all the states in which we’ve

placed the application (i.e measurements for both bare-metal and virtualized en-

vironments) in a controlled experiment. For the latency case, I suggest that it is

useful to compute the difference between the latency of a request under virtual-

ization and a similar request with lighttpd running on bare metal.

If we’ve picked an existing variable as our metric, we can proceed directly to per-

forming the regression step (training). This will turn into a classification problem if the

chosen variable is discrete11. When computing a new metric (in our case, what we con-

sider to be the “ground-truth” latency difference between virtualized and bare-metal

scenarios), the process is less straightforward. This is because we typically have two

experiments, Ebare metal and Evirt, without knowing the joint distribution of variables

between them. In a sense, for a given request served under virtualization, we don’t

know the “corresponding” request on the bare-metal side in order to substract their

latencies for computing the ground-truth difference.

One may think of a number of reasonable approaches for estimating what the

“corresponding” request is:

Average latency of same-type requests: Looking at the causal graph in Figure 4.5, in

terms of local measurements (which exist for both Ebare metal and Evirt), a request is

characterised by 3 “root” variables: size, concurrency and local load. We can start by

stratifying the dataset on those variables, and computing bare-metal latency averages

for each group. For each request served with virtualization, we may then take the

difference between its latency and the average latency of the corresponding bare-metal

group.

This poses a number of disadvantages: we have effectively summarised a whole dis-

tribution of latencies for each bare-metal group through a single number; furthermore

we’ve seen previously that averages are not necessarily representative for the types of

11Gaussian processes can handle both cases

115

distributions that come up in practice. We could improve things by picking the median

instead. However, quite a bit of information is lost: we will more than likely end up

overestimating the true difference, as any request from the tail of the Evirt latency dis-

tribution will attribute its place in the tail to the fact that lighttpd is running under

virtualization.

Naturally, this option is not useful in practice, but it highlights the elements that

we must improve upon, namely the need to find “corresponding” requests which are

in a similar region of the distribution as the request we’re considering on the Evirt side.

Quantile-to-quantile (Q-Q) differences: This strategy takes into account the relative

rank of a given request within the latency distribution of each of the experiments.

I start by observing that if Evirt would introduce no extra latency when compared

to Ebare metal, then all percentiles12 of the two latency distributions would stay the

same. Any shift in the percentile is obviously attributable to the changes we’ve made

between experiments. Therefore, given the percentile pvirt of a given request latency

lvirt, we can compute the latency at the same percentile in Ebare metal, l
q
bm. Then, we

can take lvirt − lqbm to be the ground truth difference representing the latency that can

be attributed to virtualization (Figure 4.7a). This is the approach that was initially

proposed in the Soroban paper [Lucian-3].

The statistical justification for picking the corresponding quantile in a different

distribution of the same metric is the comparison of items with equal probabilities:

if the value I have measured in the virtualized environment is very high and highly

unlikely (99.999 percentile), it makes sense to compare it with a similarly unlikely

measurement in the bare metal experiment, to see the typical shift in the metric at that

percentile.

Iterated quantile-to-quantile differences: Considering the previous Q-Q difference strat-

egy together with the causal graph shows a potential problem. We essentially end up

attributing the whole of lvirt − lqbm as the contribution of the hypervisor to the la-

tency. However, looking at the graph, lvirt contains two additive components: a lo-

cal one (k cyc, wait, usr cyc) and one coming from the hypervisor (xen sch out cyc)

(Figure 4.7b). While the local component is influenced by the hypervisor, it can also

vary while xen sch out cyc remains fixed (because of the other variables in the graph).

Now, let’s imagine two scenarios leading to the same lvirt: one where the local compo-

nent is large (for example, because of application-side wait times) and xen sch out cyc

is small, and the other where the local component is small (fast request from the per-

spective of the application) but xen sch out cyc is large. According to the previous

12Here, I will consider quantiles and percentiles as equivalent terms, without risk of confusion. In the
typical definition, percentiles are 100-quantiles (the division of the probability distribution range into 100
intervals of equal probability)

116

Latency, bare metal Latency, virtualized

lvirt = 2e5 cyclbm = 1.7e5 cyc

Q = 95.7 %tileQ = 95.7 %tile

QQ diff = 0.3e5 cyc

(a) Quantile-to-quantile differences between virtualized and
bare-metal latency distributions

k_cyc wait

srv_lat

xen_sch_out_cyc

usr_cyc

Local Extern (Evirt only)

+

xenvirt-0 xenvirt-18

xd=QQ diff

latr = latvirt-18 - xd

latbm lat
r

ld=QQ diff

xen_block#

(b) Iterated quantile-to-quantile, taking into account the causal
graph. M is the resulting ground-truth metric

Figure 4.7: Computing ground truth differences

strategy, the same ground-truth difference will be computed. However, it is clear that

we should assign a larger contribution of the hypervisor to the slowdown of the request

in the second case.

What we actually want is separate predictions for the slowdown caused by the hy-

pervisor under contention to the two components (local and external to the target VM).

We can rephrase that as a what-if question: “What would the latency of this request

be if the server would run on bare-metal (no external influencers)?”. The solution to

this problem shows how one can talk about what-if scenarios when relaxing some of

the constraints we’ve defined in Chapter 3 (namely, the requirement of targeting only

variables that are independent of all others and have a direct influence on the estimated

variable). Furthermore, we are discussing predictions for particular measurements and

not for entire distributions.

Consider the data slice presented in Figure 4.6, where lighttpd runs in a VM and

117

there are 18 other VMs running on the same physical server. The VMs colocated

with the lighttpd VM are running a synthetic stress workload using one CPU worker

using all the CPU and one I/O worker continuously modifying a file and calling fsync,

with a 66% duty cycle (2 seconds activity, 1 second wait). Because activity and wait

times are not synchronised across VMs, this generates a noisy background workload.

The process of determining the metric for a given request req(latvirt-18, xenvirt-18, ...) is

shown in Figure 4.7b:

1. First we determine, for each external influencer, the QQ difference when com-

pared to a baseline distribution, while stratifying the data in accordance to cat-

egorical or count variables which are direct parents in the causal graph. In our

case, I pick xen sch out cyc in the current distribution (18 concurrent VMs) ver-

sus the same variable in the non-contended virtualization scenario where the VM

executing lighttpd is the only one running (virt-0). However, in virt-0 I will only

consider requests with a similar number of xen block#s and xen yield#s. Any

slowdown between bare-metal latency (lbm) and lvirt-0 remains to be attributed

to the local component of the metric. Result: xd, the impact of contention on

xen sch out cyc.

2. Because the contribution of xen sch out cyc to the final latency is additive (even

through mediated by the local variables), we can subtract xd from the latency of

our request, latvirt-18. Result: latr the latency of req if xenvirt-18 would have been

xenvirt-0 instead (the latency without contention introduced by the virtualized

environment).

3. Obtaining latr’s quantile from the latency distribution in virt-013, we compute

the QQ difference when compared to the bare-metal distribution. This gives us

a measure of the slowdown of operations inside the lighttpd VM while under

virtualization (the slowdown caused by the hypervisor to the local component of

our ground-truth metric). Result: ld, the impact of virtualization on srv lat.

4. The final ground-truth slowdown caused by virtualization is obtained by sum-

ming up the local and external components: M = ld + xd

If needed, multiple ground-truth metrics can be computed, but in the following

sections I will assume that a regression model will be built for each of them, separately.

We now have all the elements required for running a regression for modelling the

relationship between the set of selected variables and the ground truth metric. I propose

using a Gaussian process for this purpose, due to its good robustness in working with

noisy data. The benefit of running this regression is that the resulting model will have

some generalisation power over situations not encountered during the training phase,

13The subtraction in point 2 has brought us from the virt-18 to the virt-0 latency distribution

118

by identifying trends in M . Thus, it is better to build a regression model as a source

of metric predictions (together with confidence intervals for their values) rather than

storing all the raw data and applying the strategies above in determining an estimate

of the chosen ground-truth metric on every request.

4.3.3 Gaussian processes training14

The problem I’m trying to solve is finding a function f that connects the set of selected

variables X (section 4.3.1) representing measurements of a given application activity (in

my example, lighttpd serving a web request), to the ground truth metric y (latency that

can be blamed on the hypervisor, discussed in section 4.3.2). Unlike when computing

ground truth metrics, X can only contain data which can be measured in the target

environment (the cloud). Learning function f from the data is naturally formulated

as a multivariable15 regression problem, and Gaussian processes are a good fit for this

task as they don’t place inherent limitations on the distribution of the underlying data,

and allow for measurement noise. As I have shown previously, most of the distributions

encountered when doing lighttpd measurements are non-normal. Additionally, it is

possible that the relationship between them and y is nonlinear.

For solving the problem, the Gaussian process considers a random variable F rep-

resenting a general family of functions fi with distribution p(f), that are regression

model candidates. The property imposed on F is that any linear combination of

samples (functions) has a joint Gaussian distribution. In typical notation, we take

F ∼ GP (m,K) to mean that F is distributed as a Gaussian process with mean func-

tion m and covariance function (kernel) K.

The kernel has significant control over the shape of the functions that will be sam-

pled from F . In the experiments I conduct in the following section, K is chosen to be

a squared exponential (Radial Basis Function). RBS has a number of hyperparameters

such as noise variance, length-scale (determining how fast a function can vary) and

roughness. Optimal values for those are obtained directly from the data, through an

optimisation step.

The initial considered model, including ni as the measurement noise term is:

yi = f(xi) + ni

f ∼ GP (·|0, RBS)
(4.3)

14Dr Ramsey M. Faragher has helped in picking Gaussian processes as the right regression tool and
tuning its parameters for Resourceful data, based on his previous experience in this area. I have devel-
oped the strategy for selecting variables and determining ground-truth influences taking into account the
causal graph relationships, together with the scripts required for building the regression model and doing
predictions on new measurements.

15some statisticians do not make the distinction between multivariable (multiple input variables, a single
predicted response y) and multivariate (multiple input variables, multiple output variables))

119

This is updated by computing the posterior on f after seeing the training measurement

data and corresponding ground truth values M = {(xi, yi)
n
i=1}.

The resulting model is flexible enough for being able to weigh the importance that

different dimensions in X have on the value of y locally. For example, it allows for the

number of VM blocks to predict the hypervisor impact at low request latency, but it

can place a higher weight on a different dimension (time the VM was scheduled out) at

higher latencies. Once f is known, y can be predicted for measurements x∗ that have

not been seen before.

4.4 Evaluation

4.4.1 Setup

I run the experiments on the same physical server and under the same conditions as the

ones in Chapter 3. The only difference is that instead of running lighttpd on bare-

metal, I execute it in a VM running on top of the Xen hypervisor. A modified version

of Xen 4.6 is used, and experiments are run under two Xen scheduler configurations

(credit, credit2 schedulers). The only additions to Xen are for supporting the disclo-

sure of VM scheduling data, as discussed in section 4.2.4. The lighttpd VM has one

vCPU, and is allocated 7Gb of RAM. Resourceful measurements are only performed

within this VM. Resourceful has special support for reading the shared pages exposed

by the Xen hypervisor, but no further application-side changes are necessary (the data

measured in Xen is added to Resourceful measurements as an extra kernel subsystem

named “EXTERNAL HYPERVISOR XEN”)

In the training phase, I run lighttpd under a fixed ab16 workload (512K files, con-

currency 20) but progressively increase the number of other VMs running on the same

physical host. The workload is chosen as to keep a balance between work done in

user-space and kernel-space while maintaining correspondence to real-world scenarios.

Each of the other VMs have 1 vCPU and 512Mb RAM. I only consider the situations

where at least 7 other concurrent VMs are started, as running a total number of vC-

PUs smaller than the available number of physical cores (8) introduces no contention

(there are minimal observed differences between running 4 other VMs and running 7

of them). Each of the VMs runs a synthetic stress workload, using

1 stress -c 1 -i 1 --timeout 2

2 sleep 1

This means running 1 CPU intensive task and 1 IO intensive task (spinning on

fsync) for 2 seconds, followed by a 1 second sleep (a 66% duty cycle). This setup is

16ab is a HTTP benchmarking tool developed by Apache. I use ab as a load generator for the instru-
mented lighttpd. Single-threaded ab is not ideal for saturating server throughput, so any tests involving
throughput testing use the weighttpd tool instead.

120

one that can be used in the training phase of real systems for which diagnosis is desired,

if production workload characteristics are not fully known: by going from low con-

tention to high, while exercising the main areas of resource consumption, Resourceful

data will implicitly record the changes in application behaviour that are important for

doing attribution.

Picking two sets of Xen scheduler configurations is done for providing some context

of what can be expected in terms of contention introduced by Xen under different

conditions, but also for highlighting an important aspect in the training process and a

limitation of Soroban: if the underlying mechanisms that generate a given ground truth

metric for the impact of the hypervisor change, previous models of attribution become

obsolete. A comparison between the behaviour of the two schedulers which justifies

the observation that the underlying latency-inducing mechanisms change is made in

Figures 4.8, 4.9.

4.4.2 Training: the case of two hypervisor schedulers

Under the test workload, the credit2 scheduler (which is optimised for low-latency

applications and higher VM density) introduces much less variation in the presence

of contention. In contrast, the credit scheduler introduces a clear shift towards the

right of the distributions as contention increases (Figure 4.8a). This shift towards

the right can be observed in most of the metrics, including the latency induced by

kernel operations (Figure 4.9a) or by scheduling (Figure 4.9c). In the latter case, the

distribution also changes its shape, with the appearance of a second peak towards

the tail. No such changes can be observed in the individual components that create

latency in the credit2 scheduler case (b). Here, the final latency distribution becomes

wider, with local measurements (k cyc, k sch out, usr sch out) staying similar to the

uncontended case of the credit scheduler, but overall variation as contention increases

is minimal. This shows that the credit2 scheduler provides much better isolation for

the levels of contention tested here (2.4 VMs per CPU).

Furthermore, looking at Resourceful-measured data, we can describe the way in

which the scheduling mechanism changes between the two schedulers (Figure 4.10).

When using the credit scheduler, the hypervisor schedule-out time during each request

is dominated by VM-exits (no blocks or yields but high xen sch out cyc). This means

that the VM running lighttpd is forcefully preempted in order to run other VMs,

irrespective of whether it is running latency-sensitive tasks. In contrast, for the credit2

scheduler, higher schedule-out times are correlated with an increase in the number of

explicitly-requested blocks (the VM waiting for file descriptor events). This means that

by better managing time slices and credits, the scheduler can schedule the VM out

only when it can’t make further progress, avoiding increases in latency. Because the

mechanisms that determine the final latency are different between two system states

121

0e+00

1e−09

2e−09

3e−09

4e−09

0e+00 2e+08 4e+08 6e+08
latency (cyc)

de
ns

it
y

concurrent VMs
7

8

9

10

11

12

13

14

15

16

17

18

(a) Credit scheduler

0e+00

1e−09

2e−09

3e−09

0e+00 2e+08 4e+08 6e+08
latency (cyc)

de
ns

it
y

concurrent VMs
7

8

9

10

11

12

13

14

15

16

17

18

(b) Credit2 scheduler

Figure 4.8: Evolution of request latency distribution as the number of concurrent VMs is in-
creased. Here, lighttpd is serving 512K files on 20 concurrent connections. Under the load
imposed, the credit2 scheduler provides a much more consistent median latency at the price of
slightly wider distributions.

(changing the scheduler), one will need to re-run the training phase the first time the

scheduler is switched, or alternatively train under both configurations from the start.

This does complicate the analysis and training phase, and shows that for obtaining

accurate predictions developers must cover at least all the configuration/state changes

which can not be directly inferred through regression.

If a developer trains on 3 or 4 request sizes, it is reasonable to assume that the

behaviour for similar request sizes can be predicted. However, the same is not true for

changes of schedulers, garbage collectors, hypervisors or categorical configuration pa-

rameters which pick different data structures or algorithms for the running application.

Those need to be explicitly varied during the training.

From the perspective of doing attribution (explicitly understanding the contribu-

tions of each subsystem or configuration change to the latency), the credit scheduler

is more interesting, as there is more variation that can potentially be attributed to con-

tention or poor hypervisor allocation of resources. This is why in the following analysis

I prefer to discuss this scheduler instead of the more recent, optimised one (the credit2

scheduler is in the beta testing phase). However, the exact same analysis can be applied

to both configurations.

4.4.3 Ground truth blame: iterated quantile-to-quantile

Before applying the Gaussian process regression, it is useful to understand how the

proposed ground truth metric for determining hypervisor blame (i.e. how much latency

is caused by contention in the hypervisor layer) looks on the training dataset. In order

to better highlight how the proposed strategy works, Figure 4.11 shows a slice through

122

0e+00

2e−08

4e−08

6e−08

8e−08

0e+00 2e+07 4e+07 6e+07
kernel latency (cyc)

de
ns

it
y

concurrent VMs
7

8

9

10

11

12

13

14

15

16

17

18

(a) Credit scheduler

0.0e+00

2.5e−08

5.0e−08

7.5e−08

0e+00 2e+07 4e+07 6e+07
kernel latency (cyc)

de
ns

it
y

concurrent VMs
7

8

9

10

11

12

13

14

15

16

17

18

(b) Credit2 scheduler

0e+00

2e−07

4e−07

6e−07

0e+00 3e+06 6e+06 9e+06
local sched_out (cyc)

de
ns

it
y

concurrent VMs
7

8

9

10

11

12

13

14

15

16

17

18

(c) Credit scheduler

0e+00

2e−07

4e−07

6e−07

0e+00 3e+06 6e+06 9e+06
local sched_out (cyc)

de
ns

it
y

concurrent VMs
7

8

9

10

11

12

13

14

15

16

17

18

(d) Credit2 scheduler

Figure 4.9: Evolution of kernel-side latency distribution (k cyc in the causal graph) in (a),(b)
and of time scheduled out k sch out + usr sch out (c),(d) as the number of concurrent VMs is
increased.

the data, stratified by the number of concurrent VMs running on the same host as the

lighttpd VM. The scatter plot matrix presents the evolution of the time that requests

served spend being delayed by other VMs.

Under the proposed scheme, we need to compute 2 hypervisor blame metrics, xd
and ld (as defined in section 4.3.2). The first one, (xd) represents the influence of the xen

scheduler in slowing down the request. For determining this, I compute the quantile-

to-quantile difference between requests with a similar number of blocks17 for a given

number of concurrent VMs (from 8 to 18) and the base case (7 concurrent VMs). The

difference expresses, for a given xen bl#, the amount by which the distribution of cy-

cles scheduled out shifts under contention. As an example, Figure 4.11 shows how

the xen scheduled out distribution for a low number of blocks (purple) grows as con-

17this implies a clustering on xen bl#, the number of VM blocks encountered during the processing of
the request

123

Figure 4.10: Example comparing the behaviour of different Xen schedulers under contention,
for xen sch out cyc. This considers 18 concurrent VMs running alongside the lighttpd VM.

tention is increased. Thus, the computed quantile-to-quantile difference will also grow

accordingly. The results are presented in Figure 4.12: on low contention (9 VMs), the

computed metric assigns a small part of the time scheduled out as xen scheduler blame.

The proportion decreases with an increasing number of blocks. There are a small

number of requests with a high number of blocks which are faster when compared

to the base case: those are synergistic with the adaptive credit-based scheduling algo-

rithm, and end up being marginally faster by blocking frequently and not consuming

the whole time slice.

The case is similar for the high-contention case (18 concurrent VMs). However,

here the requests which don’t block attribute almost all of the time being scheduled out

as slowdown caused by the xen scheduler.

The second blame metric, ld, aims to attribute virtualization blame for the remain-

ing latency, latr = lat−xd. The second quantile-to-quantile difference is taken between

latr and the latency in the dataset measured on bare metal (no virtualization). The dif-

ference (slowdown) can then be attributed to the virtualization itself (slower I/O due

to passing through Dom0, interrupts, hypercalls).

As can be seen in Figure 4.13, the fastest requests get assigned a negative blame.

This is an artifact of Resourceful only measuring kernel-side operations within the guest

OS. Some of those are faster than on bare metal because part of the I/O stack is running

in Dom0. In reality, the whole operation (guest OS + time spent in DOM0 doing I/O)

is slower than the bare metal measurements. However, I accept the negative blame as

a compromise of not having to apply further changes to Dom0 (which could prove

impractical in real cloud provider scenarios). Furthermore, this predominantly affects

low-latency requests, while a typical system analysis will first target the high-latency

requests in the tail of the distribution.

124

Fi
gu

re
4.

11
:

E
vo

lu
ti

on
of

th
e

(x
en

sc
h
ou
t
cy
c

~
sr
v
la
t)

sc
at

te
r

pl
ot

fo
r

th
e

V
M

ru
nn

in
g
li
gh
tt
pd

as
th

e
nu

m
be

r
of

co
nc

ur
re

nt
V

M
s

in
cr

ea
se

s
fr

om
7

to
18

(t
he

ti
tl

e
of

ea
ch

pa
ne

l)
.

C
ol

or
in

g
re

pr
es

en
ts

th
e

nu
m

be
r

of
bl

oc
ks

(x
en

bl
oc
k#

)e
nc

ou
nt

er
ed

du
ri

ng
ea

ch
re

qu
es

t.
In

th
e

un
co

nt
en

de
d

ca
se

(7
V

M
s)

an
in

cr
ea

se
d

la
te

nc
y

an
d

ti
m

e
sc

he
du

le
d

ou
t

ca
n

be
ex

pl
ai

ne
d

by
an

in
cr

ea
se

d
nu

m
be

r
of

bl
oc

ks
.

H
ow

ev
er

,a
s

co
nt

en
ti

on
in

cr
ea

se
s,

m
os

t
sc

he
du

le
-o

ut
s

st
op

be
in

g
vo

lu
nt

ar
y:

it
is

th
e

hy
pe

rv
is

or
w

ho
ne

ed
s

to
pr

ee
m

pt
th

e
ta

rg
et

V
M

fo
r

ru
nn

in
g

th
e

ot
he

r
V

M
s.

T
he

re
fo

re
,w

he
n
xe
n
sc
h
ou
t
cy
c

is
hi

gh
an

d
xe
n
bl

is
lo

w
,

th
e

bl
am

e
ca

n
be

as
si

gn
ed

to
th

e
hy

pe
rv

is
or

.
T

he
G

au
ss

ia
n

pr
oc

es
s

is
us

ed
ex

ac
tl

y
fo

r
le

ar
ni

ng
su

ch
as

so
ci

at
io

ns
au

to
m

at
ic

al
ly

an
d

fo
r

de
te

rm
in

in
g

th
ei

r
im

po
rt

an
ce

in
af

fe
ct

in
g

m
et

ri
cs

lik
e

la
te

nc
y.

125

Figure 4.12: Xen scheduler blame component (xd), quantile to quantile differences for each
xen bl group. Two contention states are presented, for 9 and 18 concurrent VMs. The solid
line is x = y (the extreme case where all cycles the VM is scheduled out can be attributed as a
request slowdown caused by the xen scheduler)

Figure 4.13: Virtualization blame component (ld), quantile to quantile differences. Two con-
tention states are presented, for 9 and 18 concurrent VMs. The solid line is x = y (the extreme
case when all the remaining latency can be blamed on the virtualization)

In principle, a second specialised Resourceful kernel module could run in Dom0

and share data with the other Resourceful modules running in guests for solving this

issue. A second observation is that at this level (in contrast to xd), more blocks trans-

late directly into a larger blame: this is because those blocks all imply hypercalls and

processing that is done in Dom0 (I/O stack, network stack).

The whole ground-truth hypervisor blame is then taken to be xd + ld.

126

4.4.4 The regression model

I perform the Gaussian process training18 phase using the data presented above, se-

lecting the following input dimensions (variable names are the ones used in the causal

graph from Figure 4.5): req size (data stratified according to its value), srv lat, k -

xen out, usr xen out, xen block# and xen yield#. The learned variable y is taken to

be the ground truth blame as computed above (xd + ld).

A regression model is built, relating the multi-dimensional vector of inputs (mea-

surements) to the blame variable. Each prediction based on this model also returns the

expected mean squared error (MSE), which is used for computing confidence intervals.

The result showing slices through different dimensions of the model is presented in

Figure 4.14. The overall trend is to associate higher blame values with requests that

have higher latencies and more time spent scheduled-out (xen sch out). However, the

contribution to tail latencies starts to be shared between the hypervisor and the appli-

cation (seen as a lower xen blame in the graph). As expected, the shape of the model

closely follows that of the ground truth metric (shown in section 4.4.3).

Based on the data so far, the model can be validated against ground truth blame.

For the training process 1700 samples were taken across all numbers of concurrent

VMs (from 7 to 18). 70% of this data was used to train the regression model, while

30% of it remains as a validation set. Data in the validation set contains both pre-

dictions from the regression model and the ground truth blame metrics. Figure 4.15

looks at the prediction error over this validation set. The residual blame axis of the

figure shows how far away are the predictions from the ground truth in the validation

set. Errors are an order of magnitude lower than the metric for which attribution is

desired (latency), and the ratio stays similar in relation to the blame values themselves.

Furthermore, there are no clear trends suggesting errors are affected by the region in

the input space for which prediction is made (looking at the two projections in the

figure suggests that the error doesn’t increase with larger latencies or time the VM is

scheduled out).

4.4.5 Attributing latency to Xen

Having validated the model, it is time to look at its utility: can the predicted data be

used in performance diagnosis?

Figure 4.16 shows how Soroban perceives increased loads in Dom0. For this ex-

periment, lighttpd runs in a VM while 15 other VMs (with the same load as I’ve used

before) run concurrently on the same physical hardware. Additionally, a light load is

applied in Dom0, executing stress -c 1 -i 1 -d 1. This means that there was 1

worker process stressing the CPU, 1 I/O worker spinning on fsync and 1 worker con-

18python processing script using scikit-learn version 0.15.2

127

(a)

(b)

(c)

Figure 4.14: Slices through the regression model. Panel (a) considers predictions for unmea-
sured values (a linear range over srv lat) in order to plot the prediction as a curve, together
with the confidence interval Only 20% of the training observations are plotted in order to avoid
cluttering the graph. Other panels simply present the predicted blame for measurements in the
validation dataset.

128

Figure 4.15: This graph shows the accuracy of the hypervisor blame prediction produced after
the training process, by plotting the residuals between the model prediction and the ground
truth. Only 2 out of the 5 training dimensions are represented. Note the 2D projections in
green and blue and the fact that they are mostly flat (no bias in prediction power depending on
variable changes) and that they are approximatively symmetric with respect to zero

-2 -1 0 1 2 3 4
hypervisor blame (cyc) 1e8

0

1

2

3

4

5

6

de
ns

it
y

1e-9

95th %tile

dom0 load
no dom0 load

Blaming request slowdown on dom0 load

Figure 4.16: Two views detailing the predicted increase in hypervisor blame when a light load
is applied to dom0 (stress -c 1 -i 1 -d 1 : 1 cpu worker, 1 I/O worker (fsync), 1 disk
worker). 15 concurrent VMs are running alongside the lighttpd VM, with the same workload
as before. The latency increase that can be attributed to dom0 at the 95th percentile is 21ms
(which represents 13 % out of the 95th percentile latency of 156ms)

tinuously writing to disk a 1Gb file. The Dom0 is pinned on 4 physical CPUs, so the

load should by no means saturate its resources. The Soroban analysis is performed

based on the regression model built in the previous sections. For each request served

by lighttpd, I predict the contribution of Xen (together with the workload running

on the concurrent VMs) to the server-side latency. I then compare those predictions to

129

others from an identical experiment where no Dom0 load was present.

The scatter plot shows that in general the predicted blame is higher when the load

runs in Dom0. However, it is important to notice that not all requests are affected

equally: low latency requests behave pretty much the same as in the experiment with no

Dom0 load. However, the load has a significant effect in inducing tail latency: the slow

requests become significantly slower because of the load present in Dom0. In practice,

this could be used to detect the presence of cloud administrative tasks (such as running

anti-virus scans or performing periodic backups) that can slow down applications in

ways that are hard to predict otherwise.

In the figure on the right of 4.16, we look at the quantitative analysis in this case:

under the Dom0 load, the blame distribution has shifted to the right. More precisely,

the 95th percentile blame has increased by 21 ms. This means that according to

Soroban, the Dom0 load has contributed with an extra 21ms to the latency at the

95th percentile (156ms). Expressed as a percentage, this means a 13% increase.

4.5 Limitations of discussed methods

What-if questions on variables incommensurable with the target (explained) variable

In the current thesis, I have only covered cases where the variables that enter what-if

scenarios have the same units of measure (or are easily convertible to the same unit).

For the previous considered example, this was the case as both the variable for which

we were trying to do attribution (latency) and the variables we wanted to change under

the hypothetical scenario (xen sch out cyc, wait) were measured in cycles.

I haven’t discussed categorical variables (for example, server configuration options)

or other counts (i.e number of cache misses). i.e “how would latency change if I run a

java application with -Xmx19=10M instead of -Xmx=1G?” or “what would the latency

distribution look like if the cache misses incurred per request would be half of the

ones observed?”. In order to allow a detailed analysis in those cases, well-defined

relationships between the categorical variable c (i.e. configuration option) and the

target variable (i.e. latency) or another variable which is a parent of the target in the

causal graph must be established. If all possible values of c are known, then a separate

regression (c ~ target) could be performed. In the case of count variables, one would

sample possible values of the count and attempt a similar regression. However, if the

scatter plots between (c ~ target) do not show the possibility of predicting the value

of the target as c changes (lines parallel to the target axis intersect the points of the plot

in multiple areas) then the what-if analysis on c will remain impossible until the causal

graph is refined to contain sufficient information to allow such predictions.

If the number of categories is small (i.e we’re only interested in a particular what-if

19-Xmx sets the maximum Java heap size

130

scenario and not in the ability to change the distribution or values of c arbitrarily), one

might think to run the full procedure suggested by Soroban, comparing the system in

the two situations “normal” and “hypothetical”. However, this defeats the purpose

of an what-if scenario, as the hypothetical situation must be actually measured and

trained on.

Nonetheless, those observations still leave us in a better position than before, as

they give criteria for determining that more information about the system is needed in

order to answer the questions that we’ve posed.

Requirement for training stage The need for performing a training step before being

able to use Soroban predictions of the metric chosen as ground truth for the differ-

ence between two states of the application is a limiting factor of the current solution.

It means the application needs to first run in a controlled environment, with an ex-

periment that changes system load parameters and workload distributions in a well-

defined way. I envision two possible solutions to this problem: first, incorporating the

controlled experiment in the continuous integration strategy used when developing the

application: for example, policies might be added to perform the training step for each

release-candidate branch with a particular tag.

The second possibility is using data captured by Resourceful while running the

system in production or testing environments as training data - this is closer to a ran-

domised experiment, but gives less flexibility in choosing the baseline state against

which we compute the ground truth metrics. For example, instead of getting a pre-

diction about the influence that a hypervisor had in slowing down a particular request

when compared to the bare metal case, we would get the prediction compared to the

state of the cluster when the dataset was captured. DevOps teams could choose data

from when the application performed as expected as baseline, and select data for the

other state (i.e virtualized with increasing stress) at moments when the level of con-

tention is known or can be estimated. From this, the prediction would be able to

later provide information on whether contention in the cloud can be blamed for any

unexpected degradation in performance.

There is also the option of continuously computing the “ground truth” metrics as

described in Section 4.3.2 instead of using a trained model. However, because we base

our computations on quantile-to-quantile differences for a limited number of measured

variables, the predictions will be affected by latency distributions that change dynam-

ically over time (due to periodic workload changes, boot storms, anti-virus checks

performed by the cloud provider etc.) The regression model essentially had the role of

constraining the predicted values to the other observed variables, and this is lost when

computing the ground-truth directly.

131

Requirement for a causal graph The task of building a causal graph for all measured

variables in a complex system should not be underestimated. It will typically require

a fair amount of effort and insights into the details of each application and runtime

environment. Naturally, such graphs will also evolve as applications suffer changes.

Ideally, processes for invalidating nodes or subgraphs when changes in the underlying

software are performed should be developed – but this is an area of future research.

The presence of a rigorous testing harness when developing the application can help in

automating part of the process of adapting the causal graph and re-running Soroban

training phases when changes are made to the underlying software.

On the other hand, Soroban requires at least an approximate graph that can be

validated against measured variables. It is hard to evaluate how missing links or vari-

ables will affect the accuracy and usefulness of provided predictions. Despite this, as

long as the boundary between the two states (in our case between local and hypervisor

measurements) is modelled correctly, the results should remain useful.

Subgraphs can be built and refined independently if they can be abstracted through

a single node in a higher-level graph. In other words, if one knows what edges are

incident to a high-level node, then the node can be replaced by a subgraph which

models the behaviour of the system it represents more accurately. That being said,

inferences like the ones described in this chapter are not feasible on top of higher-

level graphs, because representing multiple processes through a single measurement

will result in inter-variable relationships which are hard to predict using regressions.

Applying clustering in the scatter plots and then doing regressions for each pair of

clusters might work, but the procedure reverts in some way to the classical trial-and-

error debugging techniques as we have no way of knowing what the clusters represent.

Ultimately, I believe that the benefits of iteratively constructing a causal graph out-

weigh the costs: it is an entity which can effectively encode human knowledge about

causality in a system or application. By doing this, it allows developers or DevOps

teams to discover, debug and understand problems without being experts in the sub-

systems or applications where these occur. It also provides a solid ground for forming

hypothesis about the way a system behaves under certain situations: how would ap-

plications respond in the presence of increased queueing times? what components are

affected by the network going down? The causal graph could be considered as the

equivalent of a system diagram, but one which allows software to understand what

points are available for measurement and how those are related to each other.

Extension of the methodology to a wider class of applications As it stands, the various

steps involved in the presented methodology have been applied to I/O operations, http

requests when a server is running in virtualized environments and for inferring the non-

132

liniar functions relating variables in the causal graph [63]20. However, more research

will be required to fully understand the limitations of this approach in more complex

scenarios (for example, when it is difficult to predict co-located workloads and their

side-effects with respect to metrics such as available memory bandwidth).

Adoption in cloud environments While Soroban is currently mainly a research project

(with the training and prediction scripts not integrated into the Resourceful API), its

not unreasonable to believe that a similar tool could be deployed in cloud environments

today, for helping with debugging and optimisation tasks. In the way I have described

the framework here (and considering the particular example in the evaluation section),

the main obstacle would be the fact that it requires changes to the application (due

to Resourceful) and sometimes to the runtime environment. For example, we21 have

modified the Xen hypervisor in order to obtain domain (VM22) scheduling data.

Those type of changes are not offered today by cloud providers, and it is uncertain

whether they would like to add such functionality to their hypervisors. However, it is

worth noting that, besides promoting transparency, the sharing of scheduling data as

we propose it does not imply the leakage of information about what other collocated

VMs are executing in the cloud datacenters: each VM will only have access to its own

xen-schedule-in/xen-schedule-out operations, together with metadata identifying their

cause (block, yield, time slice expired, low credit etc.). For example, lighttpd inside

a VM can not know whether it executes on the same physical host as another VM

running complex database querying tasks.

The only thing that Soroban promotes is the ability of the virtualized application

(i.e. lighttpd) to understand that sometimes variations in performance are not caused

by poor local optimisations but by interference from other VMs on the same physical

host. Of course, this raises the question of whether a malicious application could

execute various operations (IO, CPU-intensive, Memory-bandwidth intensive) and by

determining how each of those are slowed down or not, build a workload profile of

other things executing on the same physical host. However, such inferences can only

be done in the aggregate: the view of every single VM remains partitioned between

“local” and “everything else” on the same physical host.

4.6 Conclusions

In this chapter I have presented Soroban, a potential approach for attributing perfor-

mance variations at the level of application activities. In this context, attribution means

20This is an investigation that is not part of this thesis and has been led by Philipp Geiger
21As mentioned previously, modifying the Xen hypervisor was in majority Oliver R.A. Chick ’s contri-

bution, with me focusing on optimisation issues.
22domain is the Xen term for a VM

133

http://orcid.org/0000-0002-6889-8561

the ability to discern how various components of the system or application have im-

pacted the final measured values, and by how much. This is of high importance for

anyone looking to understand unexpected application performance variations (diag-

nosis) and to define proper targets for optimisation (do I need to further optimise my

application, or should I pay more for running it on dedicated machines in the cloud?).

For reaching the stated goal, I have proposed an attribution methodology: I suggest

starting from building a causal graph that relates the measurements taken in various

parts of the system. Then, based on the target variable for which attribution is desired,

I have defined a process for selecting other variables which are of most benefit for

attribution. Following this, a ground-truth metric must be established, that is able to

assign fractions of the target variable to various components in the system. Based on

the information above, a supervised learning algorithm based on Gaussian processes

builds a regression model that when given the selected variables predicts the ground-

truth metric for individual application activities.

The example chosen concretely was a web server (lighttpd) in a virtualized envi-

ronment. I have shown how to apply the methodology developed in Soroban in order

to attribute variations in latency either to the application or to the hypervisor. The final

result was the ability to predict, for each request that was similar to at least one other

request in the training data (in terms of resources consumed in the kernel), how much

of the latency is given by contention at the hypervisor level.

134

“I may not have gone where I intended to go, but I think

I have ended up where I needed to be.”

— Douglas Adams, The Long Dark Tea-Time of the Soul

5
Conclusion and research directions

IN THIS THESIS I have looked at using computational provenance (that is, provenance

about the properties of computations rather than about the data they produce) as a fun-

damental primitive for explaining application behaviour. The main purpose in doing so

was to show that this kind of metadata can be efficiently used in diagnosing unexpected

variations in performance. Looking at measurement data as a type of provenance has

allowed an understanding of the fact that kernel-level measurements need to also be

related to application-level activities and that by doing so one can gain a deeper under-

standing of variations in performance for things which matter at the application level

(requests, queries, computations, etc).

So far, this problem has not been explored from a provenance-based perspective,

with most of the focus being towards ad-hoc debugging, monitoring and root-cause

diagnosis tools. I believe that reconciling research done in the areas of provenance and

causal statistics with work done for system measurement and diagnosis is helpful in

that:

• it enables formalisations about the context of measurement; in other words, it

provides the mechanisms for making sure that a measured value represents what

the developer thinks it means. Surprisingly, existing strategies for doing system

measurements only provide reasonable recordings for aggregated metrics such

as overall load, network traffic and IO. Moving towards finer grained, semanti-

cally meaningful measurements such as “resources consumed by servicing a user

request” requires the provenance-based techniques developed in Chapter 3;

135

• based on the above, developers and system architects could get a better idea on

whether two values are comparable. For example, the provenance of data result-

ing from a benchmark will tell us whether it is reasonable to compare its results

with the ones obtained from a different benchmark of a system implementing

similar functionality. Furthermore, answering “what-if” questions enables the

estimation of benchmark results under conditions closer to the ones in another

benchmark, making the two comparable (in an “apples-to-apples” sense).

• it enables building semi-automated debugging tools, eliminating some of the trial

and error process in identifying system issues. Expert knowledge is still helpful,

but this knowledge can be encoded in ways in which both an automated system

and non-experts can make use of it (causal graphs, Chapter 4). This thesis takes

the first steps in that direction, showing the feasibility of such tools being built.

However, more complex evaluations in realistic environments are required in

order to further refine the proposed approach.

• it is compositional in nature (more speculative, not explored in detail in this the-

sis): two or more causal graphs dealing in detail with various parts of a complex

system could be composed in order to understand the relationships between dif-

ferent variables in the system as a whole. There is therefore opportunity for spe-

cialisation: developers can model local relationships between variables measured

in applications, on the kernel side or inside a hypervisor separately. A second

possibility is looking at the graph at multiple “scales” (i.e.) levels of detail. This

would imply nodes that have an internal structure (of further causal sub-graphs),

akin to the way workflow graphs are built.

Some of the directions highlighted above remain the target of future research. How-

ever, the argument, techniques and software tools developed in the thesis show that the

path is worth considering. Targeting diagnosis and attribution also had the goal of

showing that provenance can play an active role and be immediately useful if con-

sidered a primitive collected during every computation. This is opposed to views of

“provenance as insurance” (collecting provenance with the purpose of using it at an

unspecified later time, if problems arise for a given computational result). Instead, I

propose a view of provenance as metadata that allows continuous improvement, con-

straint checking and control of our digital infrastructure. In this context, provenance

becomes part of the software we write and is then fed as input to algorithms that

execute computations on it in order to extract useful pieces of information.

Chapter 3 materializes this view by describing a user-space API that applications

can use for discovering the resources consumed at system level for each of the actions

they perform. The actual measurements are performed by the Resourceful framework,

instrumenting the relevant kernel code parts and providing back resource consumption

136

data for each application-defined activity. The concrete examples in this thesis show

how such measurements can be used for understanding performance variation, but

other use cases are equally possible (e.g. resource accounting). Linking an activity to

its consequences and being able to trace forward and backward between cause and

effect is what makes this a form of computational provenance.

A specialised Linux kernel probing mechanism had to be developed in order to

support the fine granularity at which measurements are made, and I have introduced

the notion of activity tokens for mapping between kernel and user space activities.

I have shown that those, together with kernel-side aggregations allow keeping time

overheads to a minimum.

Future work: While the basic functionality offered through Resourceful is fairly

complete, two areas for further development exist: firstly, offering the possibility of

configuring measurement points and capture variables in user-space. I envision a con-

figuration language much like the one in Listing 5.1

1 global {
2 subsystem_whitelist: net_link_layer

3 }
4

5 subsystem net_link_layer {
6 boundary:

7 probe dev_queue_xmit {
8 arg : skb

9 capture: {
10 name: net_buf_enq,

11 val : &skb ->dev ->qdisc

12 }
13 },
14 probe qdisk_restart {
15 arg : dev

16 capture: {
17 name: net_buf_deq,

18 val : &dev ->qdisc

19 }
20 }
21 metrics: cycles

22 map_async: match(net_buf_deq, net_buf_enq)

23 }

Listing 5.1: Sample configuration file defining a custom subsystem

137

This defines a custom subsystem boundary (net link layer) on two kernel func-

tions (the probes at line 7 and 14). Furthermore, it would enable a user to set up both

predefined metrics that can be captured (i.e. “cycles” on line 21) and custom asyn-

chronous tracking. For tracking data structures, the developer would need to identify

in each function a number of local variables that need to be captured (lines 9 and 16),

and define a match clause with two parameters: the first declaring when data leaves a

shared buffer and the second for when data is placed in that buffer.

On the Resourceful side, a hash table indexed by pointers to the captured data

structures is queried whenever the custom probes are fired, and the required data for

asynchronous tracking is collected.

The second possible direction for improving Resourceful would be to allow cross-

host or cross-network nodes aggregations: if a given service activity crosses multiple

machines, we might want to aggregate the resources consumed on each of those ma-

chines in a single coherent view. Similarly, at the network level we might want to

aggregate resources consumed for particular flows. Some of the techniques for doing

this have been developed for applications that base their communication on fixed spe-

cialised RPC libraries (such as Google’s Protocol Buffers RPC layer) [107]. However,

extending it to arbitrary applications is more challenging.

Using the data provided by Resourceful and an augmented Xen hypervisor, Chap-

ter 4 brings everything together into a methodology for doing attribution. Further-

more, it describes how one might evaluate the impact of changes in the configuration

or in the computational environment on an executing application.

Future work: While I have provided a number of examples showing that this goal

is achievable, this can only be classified as a starting point: there are numerous im-

provements that are needed in future research, both on the theory side (optimising the

amount of required measurements) and on the inferencing side (extending structural

causal models). In terms of practical implementation, Soroban needs to be integrated

with visual exploration tools that allow for high level system analysis and optimisation.

Beyond the actual use cases explored in this thesis, provenance needs to be consid-

ered a primitive of computation more widely. In the next sections, I will describe some

of the areas where research effort may help in supporting this vision. The list is a

combination of possible provenance-based tools and longer-term desirable research.

5.1 General provenance APIs1

Beyond specialised APIs for provenance-enabled measurements (like the Resourceful

API), it makes sense for applications to disclose provenance in general ways. While

1An earlier version of those ideas was published as part of my article in TaPP 2015 [Lucian-2]

138

this section focuses on what primitives are needed for making such types of disclosure

possible, the end-goal needs to be at least partially automated augmentation of pro-

grams. This means that future research in static analysis might consider the needs of a

provenance API in order to enable disclosure calls to be injected into either the code of

applications or directly into the binary at runtime.

However, at least in existing solutions, disclosing provenance trades off the trans-

parency of provenance capture for the possibility of recording it in a more semantically

accurate way, across various layers. Workflow management systems are particularly

suitable for this approach, and implementations like Kepler [4] or VisTrails [26] take

advantage of the data flow and dependencies disclosed in the workflow’s definition to

automatically determine provenance.

Extending this to the general case assumes APIs with calls for disclosing relation-

ships between pieces of data. Such APIs have already been proposed, either as part

of observed-provenance systems, as is the case of DPAPI [102], or as general purpose

provenance libraries - the case of CPL [89]. I aim to systematically discuss the issues

that limit the generality of those APIs, and propose some other possible research direc-

tions.

Current API limitations: There are four major scenarios for which current available

APIs fail to provide adequate support.

1. Tracking provenance at granularities smaller than file level. The existing solu-

tions (both DPAPI and CPL) are able to create arbitrary provenance objects and

annotate them with key/value pairs as the process transforms data. However, the

main challenge is recovering the identity of those objects starting from output

data. It is not currently possible to search for the provenance of some values in

a file, as there is no way to determine which provenance objects hold the cor-

responding information. The same problem appears for operations that do not

directly interact with files, but still generate provenance (as is the case with copy-

pasting text between two editors).

2. Exploring the semantics of disclosed provenance. Existing APIs fail to consider

how the key/value annotations can be consumed in automated ways (for exam-

ple, by applications using provenance to reason about data quality). As long as

the meaning of each key/value remains opaque, it is difficult to build applications

that use provenance irrespective of its source.

3. Use in a distributed environment. One of the common aspects of existing prove-

nance capturing systems is their orientation towards centralised storage. How-

ever, it would be useful to store provenance close to the data and easily keep them

together when transferring between hosts or responsibility domains. Reposito-

ries similar to the ones used by distributed versioning systems (like git) would

139

be more appropriate in this scenario, replacing huge provenance databases with

structures that are more easily synchronised and managed.

4. Leveraging existing data as provenance. It is important to recognise that many

applications already output information which could be considered provenance

(e.g as part of logs or standard IO). Current provenance APIs cannot use this

information directly, forcing the developer to disclose it twice when making the

application provenance-aware (once as part of normal application output, and

subsequently when creating provenance objects). Recognising existing data as

provenance would enable applications to play an active role within a provenance-

aware system without having to be modified or recompiled.

Classifying Provenance-aware Entities

Before looking at the core of a possible API, it is important to get a better understanding

of the fundamental entities that have a role in generating, accumulating or propagating

provenance metadata. Existing data provenance models (such as PROV-DM, OPM

or Provenir) address this at a high-level, making it difficult to clarify the relationships

between interacting system entities (processes, files, pipes, etc) and the provenance

they produce. Instead, I consider a lower-level model, which allows a direct mapping

between system object types and our API data structures.

The provenance structure and properties for different entities will vary depending

on their type. For example, the provenance of some entities needs to take into account

versioning (e.g. files), but this is not necessary in other cases (processes, pipes) or might

be requested on demand (data structures). Existing APIs prefer a uniform approach

instead.

Entity

Active Passive

Standalone Dependent Persistent Transient

processes

kernel
pipes

sockets

mmap

files

databases

data structures

environment vars

device files

stdin/out

Data ProvenanceProcess Provenance

Figure 5.1: Provenance-aware entity types

As illustrated in Figure 5.1, a distinction is first made between active and passive

entities, based on a simple criteria: active objects are the ones through which data

“flows”, while passive objects are stores of information. This can be directly mapped

on the existing classification of process provenance (active) and data provenance (pas-

sive). However, in order to obtain a complete typing of provenance, we need to distin-

guish subcategories within active and passive entities.

140

Among active entities, the standalone ones are computational: they can be instan-

tiated from a passive entity (the binary) to produce, derive or transform data. This

includes processes and OS kernels, but could also refer to computational abstractions

such as middleware services.

The provenance of such entities is dual: on one hand, it is linked to the provenance

of the underlying passive entity, which describes the process used to obtain the exe-

cutable (the build process, compiler parameters, etc). On the other hand, standalone

entities have provenance related to each particular run (command line arguments, en-

vironment variables), and are uniquely identifiable during their lifetimes.

In the other subcategory, dependent entities are only instantiated within the remit

of another active standalone entity. They typically represent communication primitives

such as pipes, sockets or memory mappings.

Passive entities map data storage abstractions and are categorised depending on

how they change. The persistent ones are accessed or modified through fixed system

interfaces (read, write) and store data for longer periods of time. Transient entities

on the other hand have limited lifetimes, and might change without the knowledge of

the OS. Typically, they live in volatile memory, even though sometimes they might be

presented to the end-user as files.

We are now in the position to give a high level description of how an API should

consider the accumulation and propagation of provenance: When standalone entities

are instantiated, they will map the data from various passive objects (inputs, context)

into local data structures (transient entities). They will then proceed to apply transfor-

mations, create new data structures, or instantiate other active objects as helpers (for

further processing or communication). As dictated by internal control flow, the stan-

dalone entity will then map the results back into passive objects (files, standard output,

etc). Provenance needs to track the hierarchy of active objects and the two mappings

(input→transient entities and transient entities→output).

API design

Consider the API packaged as a library to which applications link either statically or

dynamically. For minimum functionality, the application developer would just need to

include one header file. At runtime, the library self-initialises, overriding part of the

program startup sequence. In the process, a number of provenance objects correspond-

ing to the standalone entity that linked to the library are automatically generated, stor-

ing information about the running process, its parent and the active context (command

line arguments, environment). This means that even with minimal application changes,

tracking basic process provenance would still possible. As in existing APIs, arbitrary

key/value pair annotations should be added to provenance objects when required.

For data provenance, the developer needs to explicitly create those provenance ob-

141

jects representing passive entities, and then disclose the relationships between them

and other provenance objects by calling either an obj relation or the key relation

function. The first one discloses actual data flow between two objects (as is the case

with basic input-output relationships), while the second enables associations between

different key/value pairs (playing the role of a foreign key relationship).

The key relation function also allows for higher levels of provenance abstraction

(provenance of provenance). In this context, higher order provenance should be seen

as a way of explaining existing provenance relationships. Take the example of an

application that reads the name of its input file from a configuration file. First-order

provenance will identify a link between the application and two particular input files.

Second order provenance can explain the relationship more abstractly: namely, that

the name of the second input depends on a value read from the configuration file.

Even with the functionality described so far, the sub-file granularity issue discussed

in the context of existing systems is not completely solved. In order to determine the

identity of a provenance object that is linked to parts of file, one needs to define corre-

spondences between fragments of a passive object and their provenance (for example,

expressing the fact that the first half of the file was produced by reading and processing

two other files).

The map function implements this functionality, allowing developers to link prove-

nance objects to specific locations within passive entities. Simple mappings could be

defined between continuous (possibly overlapping) regions [start position, end

position] and another entity. More advanced mappings would look like bit masks;

automatically constructing those bit masks is possible based on explicit declarations of

the output data format for a given process.

Provenance Repositories: All resulting metadata should be persisted in decentralised

provenance repositories, grouping data and its associated provenance as a single man-

ageable unit. The provenance objects which are not directly linked to any persistent

entity (like the provenance of data passing through a pipe) are stored in the location

of the active entity that produced them. Also, provenance from one repository can

reference objects from other repositories – a key aspect of being able to scale such a

system across multiple hosts.

Similar to versioning systems, provenance repositories should be managed using a

dedicated tool (similar to git). Its purpose would be to maintain correct provenance

when entities are relocated (moved locally, transferred to other systems, etc).

Fundamental limitations

Lacking static analysis tools that patch binaries with calls to a provenance API, the

main limitation of any provenance API is the reliance on the correctness of developer-

disclosed information. This is a problem when using provenance for security related

142

tasks, such as intrusion detection: a virus might choose to disclose false provenance to

cover its tracks and make it impossible to determine which parts of the system it has

affected.

One way to overcome this would be to combine disclosed provenance with a low-

overhead observed provenance system, and check for provenance consistency between

the two. A trust-based model that classifies active provenance entities (such as pro-

cesses) could also be a viable solution, but would require more user input.

5.2 Other directions and applications for computational prove-

nance

Predicting the effects of local changes in distributed systems (distributed what-if scenarios)

This is an extension of Soroban using data from distributed Resourceful measure-

ments.

Dynamic instrumentation paths based on provenance: Collecting detailed instrumen-

tation when execution diverges from a known model. This would provide a way

of further reducing typical provenance collection overheads: At first, applications

can be run with all available probes enabled, collecting detailed provenance data.

Afterwards, instead of doing detailed instrumentation, we switch to statistical

sampling in order to detect whether execution has diverged from known traces.

If it has, we start detailed recording only for the “branch” that diverged. We save

the new information for the subsequent runs of the same set of applications.—

Monitoring fault tolerance using provenance (infer degraded system states based on

execution data paths) - this would involve tracking failure modes and measur-

ing the resilience of measurements in the face of nondeterministic events (failure,

random i/o, scheduling). A model of system execution can be built using prove-

nance. Assuming we run the software for a long time (i.e. a server), we will get a

fairly accurate image about its behavior by looking at the provenance metadata.

In that case, we can identify the places where to insert instrumentation/moni-

tor provenance for new inputs in order to see if the system has entered a state

where even if it produces the correct answer, its resilience to errors is reduced.

For example, in a replication system, we typically see the data replicated on 3

machines. At some point, the provenance trace shows only 2-way replication

because of a storage failure. Determine that something is wrong even if the end

result is correct.

Pattern discovery through provenance - similar to the clustering of code from student

homework assignments proposed by Jonathan Huang2 This was an interesting
2http://jonathan-huang.org/research/pubs/moocshop13/codeweb.html

143

http://jonathan-huang.org/research/pubs/moocshop13/codeweb.html

approach to determining similarities between multiple traces and grouping them

together based on common properties. Clustering provenance traces might help

in identifying common application patterns/problems.

Root cause analysis using “why-not” queries on provenance graphs. The study of nega-

tion in provenance graphs remains an important topic. Consider the questions I

have previously asked in Chapter 4. Those can also be asked in negative form:

why was a result not affected by a particular subsystem/application change (this

is a harder problem, related to the problem of negation in logical programming

languages)

Visual tools for exploring computational provenance will be fundamental in making

this type of metadata accessible and in allowing interactive high-level system con-

trol. In this area, I have already developed a working prototype called Latency

explorer (Figure 5.2). Here, two views of the system are made available: a la-

tency distribution and a per-request resource consumption breakdown based on

Resourceful data. Each of the parallel axes in the bottom graph identifies a con-

sumed resource or metric specific to the application activity (here, responding to

a http request). A given request is thus represented on the graph as a line linking

the corresponding measured values (the red line in Figure 5.2). An idea of visual

analysis using this data is to allow the selection of different intervals in the latency

histogram while coloring the corresponding requests differently in the resource

consumption graph (Figure 5.3). This allows developers to understand what is

different between high-latency requests and low-latency requests. Further filter-

ing is available on each of the resource axes. Of course, tools like these could

be extended to allow complex filtering and queries based on the causal graph

(surfacing Soroban results in a similarly interactive interface).

Theoretical improvements to structural causal models: The statistical theory developed

for those models is not complete or adapted to the requirements of system mea-

surement (especially considering empirical distributions and regression models

instead of known functions between certain random variables) [62].

5.3 Directions and applications for data provenance

Using provenance for knowledge discovery in graphs (what path did one take to find

the answer to a particular question? can this help others find information faster?)

Imagine a typical browsing scenario, of searching for a particular answer and

moving from one web site to the next in order to find it. The user stops when

enough information was collected to answer the question. This leaves a “trail”

behind (what information was used from each page and how did that contribute

144

Figure 5.2: Latency Explorer, a visual analysis tool prototype

Figure 5.3: Latency Explorer, interactive filtering for comparing low-latency requests with high-
latency ones. Each axis can be further filtered by the user. Here, filters are shown on the cpu
and IO WAIT axes.

145

to answering the question). Given this trace, can other users with similar ques-

tions be guided towards the answer? (irrelevant information filtering)

Conditions of truth Determine the conditions/context for which a result or numeri-

cal value is true. (academic paper claims, internet-published data) Consider the

provenance trace as the list of conditions necessary for the result to be true. If

different provenance traces lead to the same actual result, take all into account.

Now when presented with a new set of parameters/experiment conditions, we

can determine on what results can we base our work. For example, you can’t

base your design choices on the fact that the median latency for a key-value store

is 10ns if it was tested only on a get-heavy workload when your actual workload

is set-heavy.

Conflicting information Making sense of data in the presence of conflicting pieces of

information. If two pieces of data contradict each other, trace back the differ-

ences to changes in their respective provenance traces. What was the first place

of divergence? Alternatively, if the provenance traces are the same, you know the

difference is because of nondeterminism (or an error in the provenance system

itself)

Measuring the quality of data by allowing user-defined (distributed) computations on

top of provenance graphs. Users provide local measures of quality and aggrega-

tion operations; Overall quality can be computed based on recursively applying

the local measures to the provenance data graph.

Provenance distance Determine the ways in which two pieces of data might be related

(i.e the “provenance distance”, akin to the “edit distance”) This would allow

discovery of others doing similar work (for example), or for determining what

pieces of the parameter space were not explored in an experiment

Automated provenance “map” of research results in a field based on publications/run-

ning systems. Given a representation of provenance for current results in a given

area (say, from papers that either publish provenance or contain sufficient infor-

mation for it to be inferred) one can build a map of existing results and their

lineage; By using such a map one can determine what paths were explored and

what constitutes the boundary of knowledge in that field. The main way in which

such a map can be used is in identifying so called “myths”: results or pieces of

information that keep being reused but that have since been invalidated by other

research.

Merging partial data views based on provenance / Validating source independence claims

(reconciling different viewpoints of a “truth”) Detect self-reinforcing “myths”.

146

For example, a group of papers claiming similar but wrong results which were

all based on a common bad research “seed”. This is related to the classical ex-

ample of journalistic “3 independent sources” when in fact all 3 have a hidden,

unreliable common source.

Recording negative results in research Positive/noteworthy results are treated prefer-

entially in academia because they generate papers. What if we could use prove-

nance to automatically record and organise the failed attempts? One could go

and see if a proposed processing path was tried unsuccessfully before committing

time and resources to it

Propagating changes and invalidating results Propagate changes in personal details (home

address/age/position/etc) to whoever is using this data and has permission to ac-

cess it. The same techniques could be used in propagating changes from new

experimental results into a larger system. This is not necessarily the same as in-

cremental computation. I might just want to know what things were invalidated

by a new discovery/result. What experiments should be re-run given a new re-

sult / or given a set of changes in my program? Based on this data, somebody

may choose (for example) to do re-computation only when a provenance-based

algorithm will predict that 5% of the outputs will be significantly affected. This

might require weighting the contribution of each input to the outputs.

5.4 Provenance research in other areas

More generally, the research done in other fields should consider provenance as a first-

class primitive with distinct characteristics.

The area of reproducible recording and execution replay [47] has so far looked

at characterising software outputs while not considering computational provenance

(adjacent properties of those outputs). Similarly, work is being done towards obtaining

reproducible builds: the output of this research will be useful in eliminating sources of

nondeterminism in the provenance of applications or libraries.

Querying and visualisation: despite the research done so far in terms of querying,

exploring and visualising provenance, it still is a challenging problem and it remains to

be seen how existing knowledge about graph exploration and visualisations could be

applied, or whether totally different representations are required.

Distributed systems: there have been attempts of extending provenance to net-

worked systems, but problems related to heterogeneity in distributed systems (where

not all nodes are provenance-aware), scaling to a large number of nodes, long-term col-

lection and storage remain to be solved. Additionally, there has been very little research

on the provenance of the network itself (with various nodes and routes), although it

147

would be useful for people doing work in the area of software defined networking

(SDN) and virtual network functions (VNFs).

Security and privacy: we know that collecting provenance has multiple implica-

tions regarding data security and privacy, but more research is needed to understand

how applications might enable provenance questions like “who is using this data?” in

untrusted environments.

There is an implicit tension between provenance correctness and security: if part

of the provenance graph is made inaccessible to certain parties, then those will no

longer be able to run computations that extract information from the metadata or trust

that the data is coming from certain original sources; for computational provenance,

the existence of redacted portions in the graph allow for unknown relationships and

hidden confounders to exist, which might lower the quality of any analysis starting

from the underlying data. Understanding how much information is made inaccessible

by securing part of the provenance graph is an area where research is certainly needed.

A possible alternate solution to this issue is introducing authorities (digital notaries)

running on a model similar to certificate authorities (CAs) that would be able to cer-

tify the existence of certain relations in the provenance graph even when part of it is

inaccessible.

Coming back to the initial perspective described in this thesis, provenance needs

to become the underlying primitive that allows complex infrastructures to understand

and take corrective action by altering their own behaviour, correcting errors and main-

taining good service levels. At the same time, it should provide for the ideal level of

abstraction for humans to understand and exercise control over the behaviour of dy-

namic algorithms such as the ones used in machine learning. The current thesis should

only be seen as a first step in that direction.

148

Bibliography

[1] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè.

“Cloud monitoring: A survey”. In: Computer Networks 57.9 (2013),

pp. 2093–2115 (cit. on p. 40).

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds,

and Athicha Muthitacharoen. “Performance Debugging for Distributed

Systems of Black Boxes”. In: Proceedings of the Nineteenth ACM Sym-

posium on Operating Systems Principles. SOSP ’03. Bolton Landing,

NY, USA: ACM, 2003, pp. 74–89 (cit. on p. 43).

[3] Bogdan Alexe, Laura Chiticariu, and Wang C. Tan. “SPIDER: a schema

mapPIng DEbuggeR”. In: VLDB ’06: Proceedings of the 32nd interna-

tional conference on Very large data bases. Seoul, Korea: VLDB En-

dowment, 2006, pp. 1179–1182.

[4] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-frank. “Provenance col-

lection support in the Kepler scientific workflow system”. In: In Pro-

ceedings of the International Provenance and Annotation Workshop

(IPAW). Springer-Verlag, 2006, pp. 118–132 (cit. on p. 139).

[5] Yael Amsterdamer, Susan B Davidson, Daniel Deutch, Tova Milo, Ju-

lia Stoyanovich, and Val Tannen. “Putting lipstick on pig: enabling

database-style workflow provenance”. In: Proceedings of the VLDB

Endowment 5.4 (2011), pp. 346–357 (cit. on pp. 24, 33, 34).

[6] Mona Attariyan, Michael Chow, and Jason Flinn. “X-ray: Automating

Root-cause Diagnosis of Performance Anomalies in Production Soft-

ware”. In: Proceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation. OSDI’12. Hollywood, CA, USA:

USENIX Association, 2012, pp. 307–320 (cit. on p. 43).

[7] Nikilesh Balakrishnan, Thomas Bytheway, Lucian Carata, Ripduman

Sohan, and Andy Hopper. “Towards secure user-space provenance cap-

ture”. In: Proceedings of the 8th conference on Theory and practice of

provenance. TAPP’16. 2016 (cit. on p. 30).

149

[8] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. “Resource Con-

tainers: A New Facility for Resource Management in Server Systems”.

In: Proceedings of the Third Symposium on Operating Systems De-

sign and Implementation. OSDI ’99. New Orleans, Louisiana, USA:

USENIX Association, 1999, pp. 45–58 (cit. on pp. 52, 100).

[9] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.

“Using Magpie for Request Extraction and Workload Modelling”. In:

Proceedings of the 6th Conference on Symposium on Opearting Sys-

tems Design & Implementation - Volume 6. OSDI’04. San Francisco,

CA: USENIX Association, 2004, pp. 18–18 (cit. on p. 42).

[10] Luiz Andre Barroso. “Warehouse-Scale Computing: Entering the Teenage

Decade”. In: Proceedings of the 38th Annual International Symposium

on Computer Architecture. ISCA ’11. San Jose, California, USA: ACM,

2011 (cit. on p. 47).

[11] Sean Bechhofer et al. “Why linked data is not enough for scientists”.

In: Future Generation Computer Systems (2011).

[12] Omar Benjelloun, Anish Sarma, Alon Halevy, and Jennifer Widom.

“ULDBs: databases with uncertainty and lineage”. In: VLDB 06 Pro-

ceedings of the 32nd international conference on Very large data bases

(2006), pp. 953–964.

[13] Mohamed N Bennani and Daniel A Menasce. “Resource allocation

for autonomic data centers using analytic performance models”. In:

Autonomic Computing, 2005. ICAC 2005. Proceedings. Second Inter-

national Conference on. IEEE. 2005, pp. 229–240 (cit. on p. 41).

[14] Andrew R. Bernat and Barton P. Miller. “Anywhere, any-time binary

instrumentation”. In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools. PASTE ’11. Szeged,

Hungary: ACM, 2011, pp. 9–16.

[15] Olivier Biton, Sarah Cohen-Boulakia, and Susan B Davidson. “Zoom*

userviews: Querying relevant provenance in workflow systems”. In:

Proceedings of the 33rd international conference on Very large data

bases. VLDB Endowment. 2007, pp. 1366–1369 (cit. on pp. 24, 31,

32).

[16] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked Data - The

Story So Far”. In: International Journal on Semantic Web and Infor-

mation Systems (IJSWIS) 5.3 (Mar. 2009). Ed. by T. Heath, M. Hepp,

and C. Bizer, pp. 1–22.

150

[17] Manuel Blum. “Coin flipping by telephone: A protocol for solving im-

possible problems”. In: Advances in Cryptology-A Report on CRYPTO’81

(1982) (cit. on p. 35).

[18] Jérémy Bobbio. “Reproducible builds for Debian”. In: FOSDEM, Feb

(2014) (cit. on p. 39).

[19] Robert L. Bocchino Jr. et al. “A Type and Effect System for Determin-

istic Parallel Java”. In: Proceedings of the 24th ACM SIGPLAN Con-

ference on Object Oriented Programming Systems Languages and Ap-

plications. OOPSLA ’09. Orlando, Florida, USA: ACM, 2009, pp. 97–

116 (cit. on p. 39).

[20] Michelle A. Borkin, Chelsea S. Yeh, Madelaine Boyd, Peter Macko,

Krzysztof Z. Gajos, Margo I. Seltzer, and Hanspeter Pfister. “Evalu-

ation of Filesystem Provenance Visualization Tools.” In: IEEE Trans.

Vis. Comput. Graph. 19.12 (2013), pp. 2476–2485 (cit. on p. 31).

[21] Rajendra Bose and James Frew. “Lineage retrieval for scientific data

processing: a survey”. In: ACM Comput. Surv. 37 (1 Mar. 2005), pp. 1–

28 (cit. on p. 17).

[22] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao, Aleksey Pesterev,

M Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. “An anal-

ysis of Linux scalability to many cores”. In: USENIX Symposium on

Operating Systems Design and Implementation (OSDI). USENIX As-

sociation, 2010.

[23] Uri Braun, Simson Garfinkel, David A. Holl, Kiran-Kumar Muniswamy-

Reddy, and Margo I. Seltzer. “Issues in automatic provenance collec-

tion”. In: In Proc. IPAW’06, volume 4145 of LNCS. Springer, 2006,

pp. 171–183 (cit. on p. 27).

[24] Uri Braun, Avraham Shinnar, and Margo Seltzer. “Securing Prove-

nance”. In: The 3rd USENIX Workshop on Hot Topics in Security.

USENIX HotSec. San Jose, CA: USENIX Association, July 2008, pp. 1–

5 (cit. on p. 34).

[25] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. “Why and

Where: A Characterization of Data Provenance.” In: ICDT. Vol. 1973.

Lecture Notes in Computer Science. Springer, 2001, pp. 316–330 (cit.

on p. 23).

[26] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Schei-

degger, Cláudio T. Silva, and Huy T. Vo. “Vistrails: Visualization meets

data management”. In: In ACM SIGMOD. ACM Press, 2006, pp. 745–

747 (cit. on p. 139).

151

[27] Steven P Callahan, Juliana Freire, Carlos E Scheidegger, Cláudio T

Silva, Huy T Vo, and V INC. “Towards process provenance for ex-

isting applications”. In: Proceedings of 2nd International Provenance

and Annotation Workshop (IPAW). 2008, pp. 120–127 (cit. on p. 29).

[28] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. “Dy-

namic Instrumentation of Production Systems”. In: Proceedings of the

Annual Conference on USENIX Annual Technical Conference. ATEC

’04. Boston, MA: USENIX Association, 2004, pp. 2–2 (cit. on p. 40).

[29] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. “Dy-

namic Instrumentation of Production Systems”. In: Proceedings of the

Annual Conference on USENIX Annual Technical Conference. ATEC

’04. Boston, MA: USENIX Association, 2004, pp. 2–2.

[30] Giuliano Casale, Stephan Kraft, and Diwakar Krishnamurthy. “A model

of storage I/O performance interference in virtualized systems”. In:

Distributed Computing Systems Workshops (ICDCSW), 2011 31st In-

ternational Conference on. IEEE. 2011, pp. 34–39 (cit. on p. 43).

[31] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. “Paxos

made live: an engineering perspective”. In: Proceedings of the twenty-

sixth annual ACM symposium on Principles of distributed computing.

PODC ’07. Portland, Oregon, USA: ACM, 2007, pp. 398–407.

[32] Adriane Chapman, Barbara Blaustein, and Chris Elsaesser. “Provenance-

based belief”. In: Proceedings of the 2nd conference on Theory and

practice of provenance. TAPP’10. San Jose, California: USENIX Asso-

ciation, 2010, p. 11.

[33] Adriane Chapman and Arnon Rosenthal. “Provenance Needs Incen-

tives for Everyone”. In: Proceedings of the third USENIX workshop

on the Theory and Practice of Provenance. TaPP. 2011.

[34] Xi Chen, Lukas Rupprecht, Rasha Osman, Peter Pietzuch, William

Knottenbelt, and Felipe Franciosi. “CloudScope: Diagnosing and Man-

aging Performance Interference in Multi-Tenant Clouds”. In: The IEEE

International Symposium on Modelling, Analysis and Simulation of

Computer and Telecommunication Systems. MASCOTS ’15. 2015 (cit.

on pp. 41, 53, 100).

[35] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. “Compari-

son of the Three CPU Schedulers in Xen”. In: SIGMETRICS Perform.

Eval. Rev. 35.2 (Sept. 2007), pp. 42–51 (cit. on p. 42).

152

[36] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. “Compari-

son of the three CPU schedulers in Xen”. In: SIGMETRICS Perfor-

mance Evaluation Review 35.2 (2007), pp. 42–51 (cit. on p. 100).

[37] Ron C. Chiang, Jinho Hwang, H. Howie Huang, and Timothy Wood.

“Matrix: Achieving Predictable Virtual Machine Performance in the

Clouds”. In: 11th International Conference on Autonomic Computing

(ICAC 14). Philadelphia, PA: USENIX Association, June 2014, pp. 45–

56 (cit. on p. 40).

[38] Laura Chiticariu, Wang-chiew Tan, and Gaurav Vijayvargiya. “DB-

Notes: A Post-It System for Relational Databases based on Provenance”.

In: in SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD interna-

tional conference on Management of data. ACM Press, 2005, pp. 942–

944.

[39] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel

Rosenblum. “Understanding Data Lifetime via Whole System Simula-

tion”. In: Proceedings of the 13th Conference on USENIX Security

Symposium - Volume 13. SSYM’04. San Diego, CA: USENIX Associa-

tion, 2004, pp. 22–22 (cit. on p. 38).

[40] James Clause, Wanchun Li, and Alessandro Orso. “Dytan: A Generic

Dynamic Taint Analysis Framework”. In: Proceedings of the 2007 In-

ternational Symposium on Software Testing and Analysis. ISSTA ’07.

London, United Kingdom: ACM, 2007, pp. 196–206 (cit. on p. 38).

[41] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. “Tracing the lin-

eage of view data in a warehousing environment”. In: ACM Trans.

Database Syst. 25.2 (June 2000), pp. 179–227 (cit. on p. 23).

[42] Morgan V. Cundiff. “An introduction to the Metadata Encoding and

Transmission Standard (METS)”. In: Library Hi Tech 22.1 (2004),

pp. 52–64.

[43] Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, and Sarah Cohen

Boulakia. “Privacy issues in scientific workflow provenance”. In: Pro-

ceedings of the 1st International Workshop on Workflow Approaches

to New Data-centric Science. Wands ’10. Indianapolis, Indiana: ACM,

2010, 3:1–3:6.

[44] Jeff Dean. “Achieving rapid response times in large online services”.

In: Berkeley AMPLab Cloud Seminar. 2012 (cit. on p. 47).

[45] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Com-

mun. ACM 56.2 (Feb. 2013), pp. 74–80 (cit. on p. 47).

153

[46] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Pe-

ter M. Chen. “Eidetic Systems”. In: Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation. OSDI’14.

Broomfield, CO: USENIX Association, 2014, pp. 525–540 (cit. on

p. 39).

[47] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Pe-

ter M. Chen. “Eidetic Systems”. In: Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation. OSDI’14.

Broomfield, CO: USENIX Association, 2014, pp. 525–540 (cit. on

p. 147).

[48] Fahad Dogar, Thomas Karagiannis, Hitesh Ballani, and Ant Rowstron.

Decentralized Task-Aware Scheduling for Data Center Networks. Tech.

rep. MSR-TR-2013-96. Sept. 2013.

[49] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and

Peter M. Chen. “Execution Replay of Multiprocessor Virtual Machines”.

In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments. VEE ’08. Seattle, WA,

USA: ACM, 2008, pp. 121–130 (cit. on p. 39).

[50] Daniel Ellard and Margo Seltzer. “NFS Tricks and Benchmarking Traps”.

In: Proceedings of the Annual Conference on USENIX Annual Techni-

cal Conference. ATEC ’03. San Antonio, Texas: USENIX Association,

2003, pp. 16–16 (cit. on p. 100).

[51] William Enck et al. “TaintDroid: An Information-Flow Tracking Sys-

tem for Realtime Privacy Monitoring on Smartphones”. In: ACM Trans.

Comput. Syst. 32.2 (June 2014), 5:1–5:29.

[52] Úlfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. “Fay:

Extensible Distributed Tracing from Kernels to Clusters”. In: ACM

Symposium on Operating Systems Principles (SOSP). ACM, Oct. 2011

(cit. on pp. 40, 41).

[53] Peter Feiner, Angela Demke Brown, and Ashvin Goel. “Comprehen-

sive Kernel Instrumentation via Dynamic Binary Translation”. In: SIG-

PLAN Not. 47.4 (Mar. 2012), pp. 135–146 (cit. on p. 40).

[54] Brian Fields, Shai Rubin, and Rastislav Bodık. “Focusing processor

policies via critical-path prediction”. In: Computer Architecture, 2001.

Proceedings. 28th Annual International Symposium on. IEEE. 2001,

pp. 74–85 (cit. on p. 42).

154

[55] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and

Ion Stoica. “X-trace: A Pervasive Network Tracing Framework”. In:

Proceedings of the 4th USENIX Conference on Networked Systems

Design & Implementation. NSDI’07. Cambridge, MA: USENIX Asso-

ciation, 2007, pp. 20–20 (cit. on p. 41).

[56] Juliana Freire, David Koop, Emanuele Santos, and Claudio T. Silva.

“Provenance for Computational Tasks: A Survey”. In: Computing in

Science and Engg. 10.3 (May 2008), pp. 11–21.

[57] Juliana Freire, Claudio T Silva, Steven P Callahan, Emanuele Santos,

Carlos E Scheidegger, and Huy T Vo. “Managing rapidly-evolving sci-

entific workflows”. In: Provenance and Annotation of Data. Springer,

2006, pp. 10–18 (cit. on p. 32).

[58] J. Frew, D. Metzger, and P. Slaughter. “Automatic capture and recon-

struction of computational provenance”. In: Concurrency and Com-

putation: Practice and Experience 20.5 (2008), pp. 485–496.

[59] Carrie Gates and Matt Bishop. “One of These Records Is Not Like the

Others”. In: Proceedings of the 3rd USENIX Workshop on the Theory

and Practice of Provenance. Berkeley, CA, USA: USENIX Association,

2011 (cit. on p. 35).

[60] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. “Replay

debugging for distributed applications”. In: Proceedings of the annual

conference on USENIX ’06 Annual Technical Conference. ATEC ’06.

Boston, MA: USENIX Association, 2006, pp. 27–27.

[61] Ashish Gehani and Dawood Tariq. “SPADE: Support for provenance

auditing in distributed environments”. In: Proceedings of the 13th In-

ternational Middleware Conference. Springer-Verlag New York, Inc.

2012, pp. 101–120 (cit. on pp. 23, 32).

[62] P. Geiger, L. Carata, and B. Schoelkopf. “Causal models for debug-

ging and control in cloud computing”. In: (2016). arXiv: 1603.01581

[cs.AI] (cit. on p. 144).

[63] Philipp Geiger, Lucian Carata, and Bernhard Schölkopf. “Causal mod-

els for debugging and control in cloud computing”. In: CoRR abs/1603.01581

(2016). arXiv: 1603.01581 (cit. on p. 133).

[64] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. “Provenance

semirings”. In: PODS ’07: Proceedings of the twenty-sixth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems. Bei-

jing, China: ACM, 2007, pp. 31–40 (cit. on p. 23).

155

https://arxiv.org/abs/1603.01581
https://arxiv.org/abs/1603.01581
https://arxiv.org/abs/1603.01581

[65] Brendan Gregg. “Thinking Methodically About Performance”. In: Queue

10.12 (Dec. 2012), 40:40–40:51 (cit. on p. 41).

[66] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia

Tsasakou, and Luc Moreau. “An Architecture for Provenance Sys-

tems”. In: Contract D3.1.1 (2006), pp. 1–5.

[67] Neil J Gunther. “Guerilla Capacity Planning”. In: (2006) (cit. on p. 42).

[68] Philip J Guo and Margo Seltzer. “Burrito: wrapping your lab notebook

in computational infrastructure”. In: Proceedings of the 4th USENIX

conference on Theory and Practice of Provenance. USENIX Associa-

tion. 2012, pp. 7–7 (cit. on pp. 24, 29, 33).

[69] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vah-

dat. “Enforcing Performance Isolation Across Virtual Machines in Xen”.

In: Middleware 2006. Ed. by Maarten van Steen and Michi Henning.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 342–362 (cit.

on p. 42).

[70] Dani Halevy and Adi Shamir. “The LSD broadcast encryption scheme”.

In: Advances in Cryptology—CRYPTO 2002. Springer, 2002, pp. 47–

60 (cit. on p. 35).

[71] Brooks Hanson, Andrew Sugden, and Bruce Alberts. “Making Data

Maximally Available”. In: Science 331.6018 (2011), p. 649. eprint:

http://www.sciencemag.org/content/331/6018/649.full.pdf.

[72] Ragib Hasan, Radu Sion, and Marianne Winslett. “The Case of the

Fake Picasso: Preventing History Forgery with Secure Provenance.” In:

FAST. Vol. 9. 2009, pp. 1–14 (cit. on pp. 24, 35).

[73] Nima Honarmand and Josep Torrellas. “Replay Debugging: Leverag-

ing Record and Replay for Program Debugging”. In: SIGARCH Com-

put. Archit. News 42.3 (June 2014), pp. 445–456 (cit. on p. 39).

[74] Mohammad Ashraful Hoque, Matti Siekkinen, Kashif Nizam Khan,

Yu Xiao, and Sasu Tarkoma. “Modeling, Profiling, and Debugging

the Energy Consumption of Mobile Devices”. In: ACM Comput. Surv.

48.3 (Dec. 2015), 39:1–39:40 (cit. on p. 40).

[75] Galen Hunt and Doug Brubacher. “Detours: Binary interception of

Win32 functions”. In: 3rd USENIX Windows NT Symposium. 1999

(cit. on p. 40).

[76] Darrel C Ince, Leslie Hatton, and John Graham-Cumming. “The case

for open computer programs”. In: Nature 482.7386 (Feb. 2012), pp. 485–

488.

156

http://www.sciencemag.org/content/331/6018/649.full.pdf

[77] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. “Performance

Monitoring and Root Cause Analysis for Cloud-hosted Web Applica-

tions”. In: Proceedings of the 26th International Conference on World

Wide Web. WWW ’17. Perth, Australia: International World Wide

Web Conferences Steering Committee, 2017, pp. 469–478 (cit. on p. 43).

[78] Nikolai Joukov, Avishay Traeger, Rakesh Iyer, Charles P. Wright, and

Erez Zadok. “Operating System Profiling via Latency Analysis”. In:

Proceedings of the 7th Symposium on Operating Systems Design and

Implementation. OSDI ’06. Seattle, Washington: USENIX Association,

2006, pp. 89–102 (cit. on p. 40).

[79] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua

Wen, and Calton Pu. “An analysis of performance interference effects

in virtual environments”. In: Performance Analysis of Systems & Soft-

ware, 2007. ISPASS 2007. IEEE International Symposium on. IEEE.

2007, pp. 200–209 (cit. on p. 43).

[80] Samuel Kounev, Simon Spinner, and Philipp Meier. “Introduction to

Queueing Petri Nets: Modeling Formalism, Tool Support and Case

Studies”. In: Proceedings of the 3rd ACM/SPEC International Confer-

ence on Performance Engineering. ICPE ’12. Boston, Massachusetts,

USA: ACM, 2012, pp. 9–18 (cit. on p. 41).

[81] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Es-

timating mutual information”. In: Phys. Rev. E 69 (6 June 2004),

p. 066138 (cit. on p. 113).

[82] D P Lanter. “Design of a Lineage-Based Meta-Data Base for GIS”.

In: Cartography And Geographic Information Systems 18.4 (1991),

pp. 255–261.

[83] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. “LogGC: garbage

collecting audit log”. In: Proceedings of the 2013 ACM SIGSAC con-

ference on Computer & communications security. CCS ’13. Berlin,

Germany: ACM, 2013, pp. 1005–1016 (cit. on p. 26).

[84] Yi-Ching Liao and Hanno Langweg. “Cost-benefit Analysis of Ker-

nel Tracing Systems for Forensic Readiness”. In: Proceedings of the

2Nd International Workshop on Security and Forensics in Communi-

cation Systems. SFCS ’14. Kyoto, Japan: ACM, 2014, pp. 25–36 (cit.

on p. 40).

157

[85] Robert E Llaneras, JA Salinger, and Charles A Green. “Human fac-

tors issues associated with limited ability autonomous driving systems:

Drivers’ allocation of visual attention to the forward roadway”. In:

Proceedings of the 7th International Driving Symposium on Human

Factors in Driver Assessment, Training and Vehicle Design. 2013, pp. 92–

98.

[86] Chi-Keung Luk et al. “Pin: building customized program analysis tools

with dynamic instrumentation”. In: Acm sigplan notices. Vol. 40. 6.

ACM. 2005, pp. 190–200 (cit. on p. 40).

[87] Chi-keung Luk et al. “Pin: building customized program analysis tools

with dynamic instrumentation”. In: In PLDI ’05: Proceedings of the

2005 ACM SIGPLAN conference on Programming language design

and implementation. ACM Press, 2005, pp. 190–200 (cit. on p. 40).

[88] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. “Pivot Tracing:

Dynamic Causal Monitoring for Distributed Systems”. In: Proceedings

of the 25th Symposium on Operating Systems Principles. SOSP ’15.

Monterey, California: ACM, 2015, pp. 378–393 (cit. on pp. 40, 100).

[89] Peter Macko and Margo Seltzer. “A General-purpose Provenance Li-

brary”. In: Proceedings of the 4th USENIX Conference on Theory and

Practice of Provenance. TaPP’12. Boston, MA: USENIX Association,

2012, pp. 6–6 (cit. on pp. 27, 37, 139).

[90] Peter Macko and Margo Seltzer. “Provenance map orbiter: Interactive

exploration of large provenance graphs”. In: Proceedings of the 3nd

conference on Theory and practice of provenance. TAPP’11. 2011 (cit.

on p. 31).

[91] Moreno Marzolla and Raffaela Mirandola. “Performance Prediction

of Web Service Workflows”. In: Proceedings of the Quality of Software

Architectures 3rd International Conference on Software Architectures,

Components, and Applications. QoSA’07. Medford, MA: Springer-Verlag,

2007, pp. 127–144 (cit. on p. 42).

[92] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres,

and Mendel Rosenblum. “Towards Practical Default-On Multi-Core

Record/Replay”. In: SIGPLAN Not. 52.4 (Apr. 2017), pp. 693–708

(cit. on p. 39).

[93] Jeanna Neefe Matthews et al. “Quantifying the Performance Isola-

tion Properties of Virtualization Systems”. In: Proceedings of the 2007

Workshop on Experimental Computer Science. ExpCS ’07. San Diego,

California: ACM, 2007 (cit. on p. 42).

158

[94] Kirby McCoy. VMS File System Internals (VAX - VMS Series). Digital

Press, 1990 (cit. on p. 38).

[95] Patrick McDaniel, Kevin Butler, Steve McLaughlin, Radu Sion, Erez

Zadok, and Marianne Winslett. “Towards a secure and efficient sys-

tem for end-to-end provenance”. In: Proceedings of the 2nd conference

on Theory and practice of provenance. TAPP’10. San Jose, California:

USENIX Association, 2010, pp. 2–2 (cit. on p. 34).

[96] Xiaozhu Meng and B Miller. “Binary code is not easy”. In: The In-

ternational Symposium on Software Testing and Analysis. ISSTA ’16.

2016 (cit. on p. 40).

[97] Jennifer C. Molloy. “The Open Knowledge Foundation: Open Data

Means Better Science”. In: PLoS Biol 9.12 (Dec. 2011).

[98] Luc Moreau and Paolo Missier. PROV-DM: The PROV Data Model.

Technical Report. World Wide Web Consortium, Apr. 2013 (cit. on

p. 28).

[99] Luc Moreau et al. “The Open Provenance Model Core Specification

(V1.1)”. In: Future Gener. Comput. Syst. 27.6 (June 2011), pp. 743–

756 (cit. on p. 28).

[100] Kiran-Kumar Muniswamy-Reddy, D.A. Holland, U. Braun, and M.

Seltzer. “Provenance-aware storage systems”. In: Proceedings of the

2006 USENIX Annual Technical Conference. 2006, pp. 43–56 (cit. on

pp. 23, 32).

[101] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer.

“Provenance for the cloud”. In: Proceedings of the 8th USENIX con-

ference on File and storage technologies. FAST’10. San Jose, Califor-

nia: USENIX Association, 2010, pp. 15–14.

[102] Kiran-Kumar Muniswamy-Reddy et al. “Layering in provenance sys-

tems”. In: Proceedings of the 2009 USENIX Annual Technical Con-

ference. 2009 (cit. on pp. 23, 32–34, 37, 139).

[103] Kiran Muniswamy-Reddy and David Holland. “Causality-based ver-

sioning”. In: Proccedings of the 7th conference on File and storage

technologies. FAST ’09. San Francisco, California: USENIX Associa-

tion, 2009, pp. 15–28.

[104] Vijay Nagarajan, Ho-Seop Kim, Youfeng Wu, and Rajiv Gupta. “Dy-

namic Information Flow Tracking on Multicores”. In: 2008 (cit. on

p. 39).

159

[105] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic,

and Ricardo Bianchini. “Deepdive: Transparently identifying and man-

aging performance interference in virtualized environments”. In: Pro-

ceedings of the 2013 USENIX Annual Technical Conference. EPFL-

CONF-185984. 2013 (cit. on p. 43).

[106] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić,

and Ricardo Bianchini. “DeepDive: Transparently Identifying and Man-

aging Performance Interference in Virtualized Environments”. In: Pre-

sented as part of the 2013 USENIX Annual Technical Conference

(USENIX ATC 13). San Jose, CA: USENIX, 2013, pp. 219–230 (cit.

on pp. 43, 100).

[107] Krzysztof Ostrowski, Gideon Mann, and Mark Sandler. “Diagnosing

Latency in Multi-Tier Black-Box Services”. In: 5th Workshop on Large

Scale Distributed Systems and Middleware (LADIS 2011). Vol. 3. 2011,

p. 14 (cit. on pp. 40, 42, 43, 51, 100, 138).

[108] Stefan Otte. “Version control systems”. In: Computer Systems and

Telematics (2009) (cit. on p. 38).

[109] Gabriele Paoloni. White paper: How to Benchmark Code Execution

Times on Intel® IA-32 and IA-64 Instruction Set Architectures. Tech.

rep. 324264-001. Intel Corporation, Sept. 2010, p. 37 (cit. on p. 75).

[110] Hyunjung Park, Robert Ikeda, and Jennifer Widom. “RAMP: A System

for Capturing and Tracing Provenance in MapReduce Workflows”.

In: 37th International Conference on Very Large Data Bases (VLDB).

Stanford InfoLab, Aug. 2011 (cit. on pp. 24, 33).

[111] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer,

David Eyers, Margo Seltzer, and Jean Bacon. “Practical Whole-System

Provenance Capture”. In: Symposium on Cloud Computing (SoCC’17).

ACM. ACM, 2017 (cit. on p. 23).

[112] Judea Pearl. “An Introduction to Causal Inference”. In: 6 (2 2010) (cit.

on p. 99).

[113] Judea Pearl. “Causal inference in statistics: An overview”. In: Statist.

Surv. 3 (2009), pp. 96–146.

[114] Zachary N. J. Peterson, Randal Burns, Giuseppe Ateniese, and Stephen

Bono. “Design and Implementation of Verifiable Audit Trails for a Ver-

sioning File System”. In: Proceedings of the 5th USENIX Conference

on File and Storage Technologies. FAST ’07. San Jose, CA: USENIX

Association, 2007, pp. 20–20.

160

[115] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and B. Chen.

“Locating system problems using dynamic instrumentation”. In: Proc.

of the 2005 Ottawa Linux Symposium. 2005, pp. 49–64.

[116] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao. “Who

Is Your Neighbor: Net I/O Performance Interference in Virtualized

Clouds”. In: IEEE Transactions on Services Computing 6.3 (July 2013),

pp. 314–329 (cit. on p. 42).

[117] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh,

Calton Pu, and Yuanda Cao. “Who is your neighbour: Net i/o perfor-

mance interference in virtualized clouds”. In: IEEE Transactions on

Services Computing 6.3 (2013), pp. 314–329 (cit. on p. 43).

[118] Giridhar Ravipati, Andrew R Bernat, Nate Rosenblum, Barton P Miller,

and Jeffrey K Hollingsworth. “Toward the deconstruction of Dyninst”.

In: Univ. of Wisconsin, technical report (2007) (cit. on p. 40).

[119] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert

Hundt. “Google-Wide Profiling: A Continuous Profiling Infrastructure

for Data Centers”. In: IEEE Micro (2010), pp. 65–79.

[120] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

“Hey, you, get off of my cloud: exploring information leakage in third-

party compute clouds”. In: Proceedings of the 16th ACM conference

on Computer and communications security. ACM. 2009, pp. 199–212

(cit. on p. 34).

[121] Thomas G Robertazzi. Computer networks and systems: queueing the-

ory and performance evaluation. Springer Science & Business Media,

2012 (cit. on p. 41).

[122] Satya S. Sahoo and Amit Sheth. “Provenir ontology: Towards a Frame-

work for eScience Provenance Management”. In: Microsoft eScience

Workshop. Pittsburgh, PA, 2009.

[123] Can Sar and Pei Cao. Lineage File System. Tech. rep. Department of

Computer Science, Stanford University, Jan. 2005.

[124] Prateek Saxena, R Sekar, and Varun Puranik. “Efficient Fine-grained

Binary Instrumentationwith Applications to Taint-tracking”. In: Pro-

ceedings of the 6th Annual IEEE/ACM International Symposium on

Code Generation and Optimization. CGO ’08. Boston, MA, USA:

ACM, 2008, pp. 74–83 (cit. on p. 27).

161

[125] Carlos Scheidegger, David Koop, Emanuele Santos, Huy Vo, Steven

Callahan, Juliana Freire, and Cláudio Silva. “Tackling the Provenance

Challenge one layer at a time”. In: Concurrency and Computation:

Practice and Experience 20.5 (2008), pp. 473–483 (cit. on pp. 24, 27,

31).

[126] Malte Schwarzkopf, Derek G. Murray, and Steven Hand. “The Seven

Deadly Sins of Cloud Computing Research”. In: Proceedings of the

4th USENIX Conference on Hot Topics in Cloud Ccomputing. Hot-

Cloud’12. Boston, MA: USENIX Association, 2012, pp. 1–1 (cit. on

p. 100).

[127] M.I. Seltzer, P. Macko, and M.A. Chiarini. “Collecting Provenance via

the Xen Hypervisor”. In: Proceedings of 3rd USENIX Workshop on

the Theory and Practice of Provenance (TaPP’11), June. 2011, pp. 20–

21.

[128] Adi Shamir. “How to share a secret”. In: Communications of the ACM

22.11 (1979), pp. 612–613 (cit. on p. 35).

[129] Weijie Shi, Linquan Zhang, Chuan Wu, Zongpeng Li, and Francis

C.M. Lau. “An Online Auction Framework for Dynamic Resource

Provisioning in Cloud Computing”. In: The ACM International Con-

ference on Measurement and Modeling of Computer Systems. SIG-

METRICS ’14. ACM, 2014, pp. 71–83.

[130] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim.

“Seawall: Performance Isolation for Cloud Datacenter Networks”. In:

Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud

Computing. HotCloud’10. Boston, MA: USENIX Association, 2010

(cit. on p. 100).

[131] Chen Shou, Dongfang Zhao, Tanu Malik, and Ioan Raicu. “Fusion-

Prov: Towards a Provenance-Aware Distributed Filesystem”. In: Greater

Chicago Area System Research Workshop (GCASR). 2013 (cit. on

p. 38).

[132] Benjamin H. Sigelman et al. Dapper, a Large-Scale Distributed Systems

Tracing Infrastructure. Tech. rep. Google, Inc., 2010 (cit. on pp. 40,

41).

[133] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. “A survey of

data provenance in e-science”. In: SIGMOD Rec. 34.3 (Sept. 2005),

pp. 31–36.

162

[134] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A survey of data

provenance techniques. Technical Report TR-618. Computer Science

Department, Indiana University, 2005.

[135] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. “Se-

cure Program Execution via Dynamic Information Flow Tracking”. In:

SIGARCH Comput. Archit. News 32.5 (Oct. 2004), pp. 85–96.

[136] Salmin Sultana and Elisa Bertino. “A File Provenance System”. In: Pro-

ceedings of the Third ACM Conference on Data and Application Se-

curity and Privacy. CODASPY ’13. San Antonio, Texas, USA: ACM,

2013, pp. 153–156 (cit. on p. 38).

[137] Ariel Tamches. “Fine-Grained Dynamic Instrumentation of Commod-

ity Operating System Kernels”. PhD thesis. University of Wisconsin-

Madison, Feb. 2001.

[138] Wang Chiew Tan. “Provenance in Databases: Past, Current, and Fu-

ture”. In: IEEE Data Eng. Bull. 30.4 (2007), pp. 3–12.

[139] Omesh Tickoo, Ravi Iyer, Ramesh Illikkal, and Don Newell. “Mod-

eling Virtual Machine Performance: Challenges and Approaches”. In:

SIGMETRICS Perform. Eval. Rev. 37.3 (Jan. 2010), pp. 55–60 (cit. on

p. 42).

[140] Tux3, a Versioning Filesystem. https://lkml.org/lkml/2008/7/23/

257. Accessed: 2018-04-15 (cit. on p. 38).

[141] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. “A novel tech-

nique for long-term anomaly detection in the cloud”. In: 6th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 14). 2014

(cit. on p. 40).

[142] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang,

Peter M. Chen, Jason Flinn, and Satish Narayanasamy. “DoublePlay:

Parallelizing Sequential Logging and Replay”. In: SIGPLAN Not. 47.4

(Mar. 2011), pp. 15–26 (cit. on p. 39).

[143] S. Votke, S. A. Javadi, and A. Gandhi. “Modeling and Analysis of

Performance Under Interference in the Cloud”. In: 2017 IEEE 25th

International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS). Sept. 2017,

pp. 232–243 (cit. on p. 43).

[144] Robert NM Watson and Wayne Salamon. “The FreeBSD audit sys-

tem”. In: UKUUG LISA Conference, Durham, UK. 2006.

163

https://lkml.org/lkml/2008/7/23/257
https://lkml.org/lkml/2008/7/23/257

[145] Lisa Wells. “Performance analysis using coloured Petri nets”. In: Mod-

eling, Analysis and Simulation of Computer and Telecommunications

Systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE Interna-

tional Symposium on. IEEE. 2002, pp. 217–221 (cit. on p. 41).

[146] Jennifer Widom. Trio: A System for Integrated Management of Data,

Accuracy, and Lineage. Technical Report 2004-40. Stanford InfoLab,

Aug. 2004 (cit. on p. 23).

[147] Chadd C Williams and Jeffrey K Hollingsworth. “Interactive binary in-

strumentation”. In: Second International Workshop on Remote Anal-

ysis and Measurement of Software Systems (RAMSS). 2004 (cit. on

p. 40).

[148] Allison Woodruff and Michael Stonebraker. “Supporting Fine-grained

Data Lineage in a Database Visualization Environment”. In: Proceed-

ings of the Thirteenth International Conference on Data Engineering.

ICDE ’97. IEEE Computer Society, 1997, pp. 91–102.

[149] Min Xu, Rastislav Bodik, and Mark D. Hill. “A ”Flight Data Recorder”

for Enabling Full-system Multiprocessor Deterministic Replay”. In: Pro-

ceedings of the 30th Annual International Symposium on Computer

Architecture. ISCA ’03. San Diego, California: ACM, 2003, pp. 122–

135 (cit. on p. 39).

[150] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitacha-

lam, and Boris Weissman. “ReTrace: Collecting Execution Trace with

Virtual Machine Deterministic Replay”. In: Proceedings of the Third

Annual Workshop on Modeling, Benchmarking and Simulation (MoBS)

(2007) (cit. on p. 39).

[151] Ziye Yang, Haifeng Fang, Yingjun Wu, Chungi Li, Bin Zhao, and H

Howie Huang. “Understanding the effects of hypervisor I/O schedul-

ing for virtual machine performance interference”. In: Cloud Comput-

ing Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on. IEEE. 2012, pp. 34–41 (cit. on p. 43).

[152] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin

Kirda. “Panorama: Capturing System-wide Information Flow for Mal-

ware Detection and Analysis”. In: Proceedings of the 14th ACM Con-

ference on Computer and Communications Security. CCS ’07. Alexan-

dria, Virginia, USA: ACM, 2007, pp. 116–127 (cit. on p. 38).

164

[153] Takeshi Yoshino, Yutaka Sugawara, Katsushi Inagami, Junji Tamat-

sukuri, Mary Inaba, and Kei Hiraki. “Performance Optimization of

TCP/IP over 10 Gigabit Ethernet by Precise Instrumentation”. In: Pro-

ceedings of the 2008 ACM/IEEE Conference on Supercomputing. SC

’08. Austin, Texas: IEEE Press, 2008, 11:1–11:12 (cit. on p. 63).

165

166

	Introduction
	Background
	Provenance system properties
	What can it capture?
	Integrating provenance into existing workflows
	Answering questions based on provenance
	Understanding overheads
	Security issues

	Provenance in the context of system research
	Computational provenance ties to system research

	Resourceful: Placing kernel measurements in context
	System Design
	Implementation
	Measurement points
	The Resourceful kernel module
	User space API

	System evaluation
	Evaluation goals

	Understanding performance variability
	Asynchronous resource consumption
	Latency breakdowns
	Conclusions

	Soroban: A provenance-based attribution framework
	Goals, approach and alternatives
	Design and implementation
	Measurements and causal graphs
	Transferring knowledge across causal graphs
	The lighttpd causal graph
	Xen changes
	Processing and plotting scripts

	Machine learning with provenance data
	Variable selection for latency attribution
	Attributing latency - computing ground truth metrics
	Gaussian processes training

	Evaluation
	Setup
	Training: the case of two hypervisor schedulers
	Ground truth blame: iterated quantile-to-quantile
	The regression model
	Attributing latency to Xen

	Limitations of discussed methods
	Conclusions

	Conclusion and research directions
	General provenance APIs
	Other directions and applications for computational provenance
	Directions and applications for data provenance
	Provenance research in other areas

	Bibliography

