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ABSTRACT

Transparency is crucial in security-critical applications that rely on
authoritative information, as it provides a robust mechanism for
holding these authorities accountable for their actions. A number of
solutions have emerged in recent years that provide transparency
in the setting of certificate issuance, and Bitcoin provides an exam-
ple of how to enforce transparency in a financial setting. In this
work we shift to a new setting, the distribution of software package
binaries, and present a system for so-called “binary transparency.”
Our solution, Contour, uses proactive methods for providing trans-
parency, privacy, and availability, even in the face of persistent
man-in-the-middle attacks. We also demonstrate, via benchmarks
and a test deployment for the Debian software repository, that
Contour is the only system for binary transparency that satisfies
the efficiency and coordination requirements that would make it
possible to deploy today.

1 INTRODUCTION

Historically, functional societies have relied to a large degree on
trust in their governing institutions, with participants in various
systems (nation states, the Internet, financial markets, etc.) trusting
those in charge to follow an agreed-upon set of rules and thus
provide the system with some level of integrity. In recent years,
however, increasing numbers of incidents have demonstrated that
integrity cannot be meaningfully achieved solely by placing trust in
a small number of entities. As a result, people are now demanding
more active participation in the systems with which they interact,
and more accountability for the entities that govern them. The main
method that has been relatively successful thus far in achieving
accountability is the idea of transparency, in which information
about the decisions within the system are made globally visible,
thus enabling any participant to check for themselves whether or
not the decisions comply with what they perceive to be the rules.

One of the technical settings in which the idea of transparency
has been most thoroughly —and successfully — deployed is the
issuance of X.509 certificates. This is partially due to the nature
of these certificates (which are themselves intended to be glob-
ally visible), and partially to the many publicized failures of ma-
jor certificate authorities (CAs) [17, 22]. A long line of recent re-
search [4, 9, 19, 21, 23, 24, 28, 31] has provided and analyzed solu-
tions that bring transparency to the issuance of both X.509 certifi-
cates (“certificate transparency”) and to the assignment of public
keys to end users (“key transparency”).

Despite their differences, many of these systems share a fun-
damentally similar architecture [6]: after being signed by CAs,
certificates are stored by log servers in a globally visible append-
only log; i.e., in a log in which entries cannot be deleted without
detection. Clients are told to not accept certificates unless they
have been included in such a log, and to determine this they rely on
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auditors, who are responsible for checking inclusion of the specific
certificates seen by clients. Because auditors are often thought of
software running on the client (e.g., a browser extension), they
must be able to operate efficiently. Finally, in order to expose mis-
behavior, monitors (inefficiently) inspect the certificates stored in a
given log to see if they satisfy the rules of the system.

To prevent clients from accepting bad certificates, such systems
thus rely on monitors to expose them. Because auditors are the ones
communicating with the client, however, to achieve this property an
additional line of communication is needed between the auditor and
monitor in the form of a gossip protocol [7, 27]. In such a protocol,
the auditor and monitor periodically exchange information on their
current and previous views of the log, which allows them to detect
whether or not their views are consistent, and thus whether or
not the log server is misbehaving by presenting “split” views of
the log. If such attacks are possible, then the accountability of the
system is destroyed, as a log server can present one log containing
all certificates to auditors (thus convincing it that its certificates
are in the log), and one log containing only “good” certificates to
monitors (thus convincing them that all participants in the system
are obeying the rules).

While gossiping can detect this misbehavior, it is ultimately a
retroactive mechanism — i.e., it detects this behavior after an audi-
tor has already accepted a certificate as valid and it is too late — and
is thus most effective in settings where (1) no persistent man-in-
the-middle (MitM) attack can occur, so the line of communication
between an auditor and monitors remains open, and (2) some form
of external punishment is possible, to sufficiently disincentivize
misbehavior on the basis of detection. Specifically for (1), if an
auditor has no means of communication that is not under an adver-
sary’s control for the foreseeable future (a scenario we refer to as a
persistent MitM attack), then the adversary may block all gossip
being sent to and from the auditor, and thus monitors may never
see evidence of log servers misbehaving.

Such a persistent MitM attack may be performed by an adver-
sary who has compromised the cryptographic signing keys of the
software distribution authority. This would enable them to compro-
mise individual devices with malicious software updates, and then
prevent gossiping between auditors and monitors by either using
the malicious software to disable the gossiping system, or — if they
control the network the device is connect to — prevent gossiping
at a network level until the device stops gossiping. For example,
the proposed gossip protocol for CT implements a fixed-sized pool
of items to gossip, with items eventually being removed from the
pool, as it would be wasteful for devices to gossip about the same
information permanently [27]. An adversary would then have to
carry out an attack only until this pool were emptied.

Various systems have been proposed recently that use proactive
transparency mechanisms designed to operate in settings where
these assumptions cannot be made, such as Collective Signing [30]



(CoSi), but perhaps the most prominent example of such a system is
Bitcoin (and all cryptocurrencies based on the idea of a blockchain).
In Bitcoin, all participants have historically played the simultaneous
role of log servers (in storing all Bitcoin transactions), auditors, and
monitors (in checking that no double-spending takes place). The
high level of integrity achieved by this comes at great expense to the
participants, both in terms of storage costs (the Bitcoin blockchain
is currently over 100 GB!) and computational costs in the form of
the expensive proof-of-work mechanism required to maintain the
blockchain, but several recent proposals attempt to achieve the same
level of integrity in a more scalable way [20, 31]. CoSi [30] achieves
this property by allowing a group of witnesses to collectively sign
statements to indicate that they have been “seen,” but assumes
the setup and maintenance of a Sybil-free set of witnesses, which
introduces a large coordination effort.

Because of the effectiveness of these approaches, there has been
interest in repurposing them to provide not only transparency for
certificates or monetary transfers, but for more general classes of
objects (“general transparency” [10]). One specific area that thus
far has been relatively unexplored is the setting of software dis-
tribution (“binary transparency”). Bringing transparency to this
setting is increasingly important, as there are an increasing number
of cases in which actors target devices with malicious software
signed by the authoritative keys of update servers. For example,
the Flame malware, discovered in 2012, was signed by a rogue Mi-
crosoft certificate and masqueraded as a routine Microsoft software
update [17]. In 2016, a US court compelled Apple to produce and
sign custom firmware in order to disable security measures on a
phone that the FBI wanted to unlock [13].

Challenges of binary transparency. Aside from its growing rel-
evance, binary transparency is particularly in need of exploration
because the techniques described above for both certificate trans-
parency and Bitcoin cannot be directly translated to this setting.
Whereas certificates and Bitcoin transactions are small (on the or-
der of kilobytes), software binaries can be arbitrarily large (often
on the order of gigabytes), so cannot be easily stored and replicated
in a log or ledger.

Most importantly, by their very nature software packages have
the ability to execute arbitrary code on a system, so malicious soft-
ware packages can easily disable gossiping mechanisms, and we
cannot assume that the auditor always has a means of commu-
nication that is not under an adversary’s control. Specifically, as
discussed earlier a malicious adversary may perform a MitM attack
to prevent gossip while presenting an auditor a malicious view of
the log, and the log may itself contain a malicious software update
that executes code to disable gossiping. This makes retroactive
methods for detecting misbehavior uniquely poorly suited to this
setting, in which clients need to know that a software package has
been inspected by independent parties before installing it, not after.
Binary transparency systems relying on such retroactive methods,
based on Certificate Transparency, are currently being proposed
for Firefox [1].

Our contributions. We present Contour, a solution for binary
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transparency that utilizes the Bitcoin blockchain to proactively
prevent clients from installing malicious software, even in the face
of long-term MitM attacks. Concretely, we contribute a realistic
threat model for this setting and demonstrate that Contour is able to
meet it; we also show, via comparison with previous solutions, that
Contour is currently the only solution able to satisfy these security
properties while still maintaining efficiency and a minimal level
of coordination among the various participants in the system. We
also provide a prototype implementation that further demonstrates
the efficiency of Contour, and finally provide an argument for its
practicality via a test deployment for the Debian software reposi-
tory. Putting everything together, we view Contour as a solution
for binary transparency that is ready to be deployed today.

We begin in Section 4 by presenting our threat model. In addition
to the goal of preventing split views, we highlight the importance
of auditor privacy, in which auditors should not reveal the particu-
lar binaries in which they are interested (as this could reveal, for
example, that a client has a susceptible version of some software),
and of availability, in which auditors and monitors should still be
able to do their job even if the original software update server loses
its data or goes offline.

After then presenting the design of Contour in Section 5, we
go on to analyze both its security and its efficiency in Section 6.
Given the volume of related research on certificate transparency,
we also present some comparisons here, and argue that ours is the
first efficient solution to provide these security guarantees without
requiring any coordination cost, in the form of selecting a central
entity to perform authorization, or otherwise trusting some party
to form a Sybil-free set of nodes.

To validate our efficiency claims, in Section 7 we describe an
implementation of Contour and benchmark its performance, finding
that almost all operations can be performed very quickly (on the
order of microseconds), that auditors can store minimal information
(on the order of kilobytes), and that arbitrary numbers of binaries
can be represented by a single small (235-byte) Bitcoin transaction.
We also validate our claims of real-world relevance by presenting,
in Section 8, the application of Contour to the current package
repository for the Debian operating system. We find that it would
require minimal overhead for existing actors, and cost under 17
USD per day (even given the current high price of Bitcoin).

Finally, in Section 9 we present some possible extensions to
Contour, including a discussion of how to use it to achieve general
transparency, and in Section 10 we conclude.

2 RELATED WORK

There is by now a significant volume of related work on the idea of
transparency, particularly in the settings of certificates, keys, and
Bitcoin. We briefly describe some of this work here, and provide a
more thorough comparison to the most relevant work in Section 6.3.
While Contour uses similar techniques to previous solutions within
these other contexts, to the best of our knowledge it is the first full
deployable solution in the context of binary transparency.

In terms of certificate transparency, AKI [19] and ARPKI [4]
provide a distributed infrastructure for the issuance of certificates,
thus providing a way to prevent rather than just detect misbehav-
ior. Certificate Transparency (CT) [21] focuses on the storage of
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certificates rather than their issuance, Ryan [28] demonstrated how
to handle revocation within CT, and Dowling et al. [9] provided
a proof of security for it. Eskandarian et al. [11] propose how to
make some aspects of gossiping in CT more privacy-friendly us-
ing zero-knowledge proofs. CONIKS [24] focuses instead on key
transparency, and thus pays more attention to privacy and does
not require the use of monitors (but rather has users monitor their
own public keys).

In terms of solutions that avoid gossip, Fromknecht et al. [14]
propose a decentralized PKI based on Bitcoin and Namecoin, and
IKP [23] provides a way to issue certificates based on Ethereum.
EthIKS [5] provides an Ethereum-based solution for key trans-
parency and Catena [31] provides one based on Bitcoin. While both
Catena and Contour utilize similar recent features of Bitcoin to
achieve efficiency, they differ in their focus (key vs. binary trans-
parency), and thus in the proposed threat model; e.g., Catena dis-
misses eclipse attacks [29] on the Bitcoin network, whereas we con-
sider them well within the scope of a MitM attacker. Chainiac [26]
is a system for proactive software update transparency based on a
verifiable data structure called a skipchain. Chainiac uses a consen-
sus mechanism based on Collective Signing (CoSi) [30], leading to
the need for an authority to maintain a Sybil-free set of nodes.

Finally, in terms of more general solutions, Chase and Meiklejohn
abstract CT into the general idea of a “transparency overlay” [6]
and prove its security. Similarly, CoSi [20, 30] is a general consensus
mechanism that shares our goal of providing transparency even in
the face of MitM attacks and thus avoids gossiping, but requires
setting up a distributed set of “witnesses” that is free of Sybils. This
is a deployment overhead that we avoid.

3 BACKGROUND
3.1 Software distribution

Software distribution on modern desktop and mobile operating
systems is managed through centralized software repositories such
as the Apple App Store, the Android Play Store, or the Microsoft
Store. Most Linux distributions such as Debian also have their own
software repositories from which administrators can install and
update software packages using command-line programs.

To reduce the trust required in these repositories, efforts such
as deterministic builds allow users to verify that a compiled binary
corresponds to the published source code of open-source software, a
traditionally difficult process due to sources of non-determinism in
build processes. Deterministic builds are achieved by recording the
environment when building software, then replaying the behavior
of this environment in later builds to achieve the same results [8].
While this prevents developers from inserting malicious code into
the compiled binaries (i.e., making their code public but including
a different version in the actual binary), it does not address the
targeted malware threat that Contour aims to solve, in which the
source code (or binary) for one targeted set of users is different
from the copy received by everyone else.

3.2 Distributed ledgers

The concept of a blockchain was first used in Bitcoin, which is
designed to be a globally consistent append-only ledger of financial

transactions [25]. Given our limited usage of Bitcoin, we focus for
brevity only on the properties that we require for Contour.

Briefly, the Bitcoin blockchain is (literally) a chain of blocks. Each
block contains two components: a header and a list of transactions.
In addition to other metadata, the header stores the hash of the
block (which, in compliance with the proof-of-work consensus
mechanism, must be below some threshold in order to show that a
certain amount of so-called “hashing power” has been expended to
form the block), the hash of the previous block (thus enabling the
chain property), and the root of the Merkle tree that consists of all
transactions in the block.

On the constructive side, while the scripting language used by
Bitcoin is (intentionally) limited in its functionality, Bitcoin transac-
tions can nevertheless store small amounts of arbitrary data. This
makes Bitcoin potentially useful for other applications that may
require the properties of its ledger, such as certifying the owner-
ship and timestamp of a document [3]. One mechanism that allows
Bitcoin to store such data is the script opcode OP_RETURN,? which
can be used to embed up to 80 bytes of arbitrary data.

Another aspect of Bitcoin that enables additional development is
the idea of an SPV (Simplified Payment Verification) client. Rather
than perform the expensive verification of the digital signatures
contained in Bitcoin transactions, or the checks necessary to de-
termine whether or not double-spending has taken place, these
clients check only that a given transaction has made it into some
block in the blockchain. As this can be achieved using only the
root hashes stored in the block headers, such clients can store only
these headers (which are small) and verify only Merkle proofs of
inclusion obtained from “full” nodes (which is fast), and are thus
significantly more efficient than their full node counterparts.

On the destructive side, various attacks have been demonstrated
that undermine the security guarantees of Bitcoin. In eclipse at-
tacks [2, 16, 18], an adversary exploits the topology of the Bitcoin
network to interrupt, or at least delay, the delivery of announce-
ments of new transactions and blocks to a victim node. More ex-
pensive “51%” attacks, in which the adversary controls more than
half of the collective hashing power of the network, allow the ad-
versary to fork the blockchain, and it has been demonstrated [12]
that such attacks can in fact be carried out with far less than 51%
of the hashing power.

4 THREAT MODEL AND SETTING

In this section, we describe the actors in the ecosystem for software
distribution transparency (Section 4.1), along with the interactions
between these actors (Section 4.2), and the goals we hope to achieve
in this setting (Section 4.3).

4.1 Participants

We consider a system with five types of actors: services, authorities,
monitors, auditors, and clients. We describe each of these types
below in the singular, but for the correct and secure functioning of
a transparency overlay we require a distributed set of auditors and
monitors, each acting independently.

Zen.bitcoin.it/wiki/OP_RETURN
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Service: The service is responsible for producing actions, such as
the issuance of a software update. In order to have these binaries
authorized, they must be sent to the authority.

Authority: The authority is responsible for publishing statements
that declare it has received a given software binary from a service.
These statements also claim that the authority has —in some
form — published these binaries in a way that allows them to be
inspected by the monitor. The authority is also responsible for
placing its statements into a public audit log, where they can be
efficiently verified by the auditor.

Monitor: The monitor is responsible for inspecting the binaries
published by the authority and performing out-of-band tests to
determine their validity (e.g., to ensure that software updates do
not contain malware).

Auditor: The auditor is responsible for checking specific binaries
against the statements made by the authority that claim they are
published.

Client: The client receives software updates from either the au-
thority or the service, along with a statement that claims the
update has been published for inspection. It outsources all respon-
sibility to the auditor, so in practice the auditor can be thought
of as software that sits on the client (thus making the client and
auditor the same actor, which we assume for the rest of the paper).

4.2 Interactions

In terms of the interactions between these entities, one of the main
benefits of Contour — as discussed in the introduction — is that en-
tities do not need to engage in prolonged multi-round interactions
like gossiping, but rather pass messages atomically to one another.
As we see in Section 6.1, this makes it significantly more expen-
sive for an adversary to present undetected split views of a log by
launching man-in-the-middle attacks. We therefore outline only
non-interactive algorithms needed to generate messages, rather
than interactive protocols, and wait to specify the exact inputs and
outputs until we present our construction in Section 5.

Authority.commit: The authority runs this algorithm to commit
statements to the audit log.

Authority.prove_incl: The authority runs this algorithm to pro-
vide a proof that a specific statement is in the audit log.

Auditor.check_incl: The auditor runs this algorithm to check the
proof of inclusion for a specific statement.

Monitor.get_commits: The monitor runs this algorithm to retrieve
relevant commitments from the audit log.

4.3 Goals

We break the goals of the system down into security goals (denoted
with an S) and deployability goals (denoted with a D).

As discussed in the introduction, it is especially crucial in the
setting of binary transparency to consider adversaries that can
perform persistent man-in-the-middle attacks, as it is realistic that
they would be able to compromise the client’s machine. Like certifi-
cate transparency (but unlike key transparency), we do not need to
make the contents of the audit log private, as binaries are assumed
to be public information, but we do need to guarantee privacy for
the specific binaries that a client downloads, as this could reveal

that a client has a software version susceptible to malware. Finally,
even though binaries are typically large, we need to nevertheless
provide a solution efficient enough to be deployed in practice.

Keeping these requirements in mind, we aim in all our security
goals to defend against the specified attacks in the face of malicious
authorities that, in addition to performing all the usual actions of
the authority, can also perform man-in-the-middle attacks on the
auditor’s network communications. If additional adversaries are
considered we state them explicitly.

$1: No split views. We should prevent split-view attacks, in which
the information contained in the audit log convinces the auditor
that the authority published a binary, and thus it is able to be
inspected by monitors, whereas in fact it is not and only appears
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that way in the auditor’s “split” view of the log.

$2: Availability. We should prevent attacks on availability, in
which the information contained in the audit log convinces the
auditor that a binary is available to be inspected by monitors,
when in fact the authority has not published it or has, after the
initial publication, lost it or intentionally taken it down.

$3: Auditor privacy. We should ensure that the specific binaries
in which the auditor is interested are not revealed to any other
parties. We thus consider how to achieve this not only in the face
of malicious authorities, but in the case in which all parties aside
from the auditor are malicious.

D1: Efficiency. Contour should operate as efficiently as possible,
in terms of computational, storage, and communication costs. In
particularly, the overhead beyond the existing requirements for a
software distribution system should be minimal.

D2: Minimal setup. In addition to the computational overheads,
we would like as little effort —in terms of, e.g., coordination —
to be done as possible in order to deploy Contour, and for it to
require the minimal amount of change to the existing system.

5 DESIGN OF CONTOUR
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Figure 1: The overall structure of Contour. Dashed lines rep-
resent steps that are required only if archival nodes are used.

In this section we describe the overall design of Contour. An
overview of all the interactions in the system can be seen in Figure 1.



5.1 Setup and instantiation

Contour and its security properties make use of a blockchain, whose
primary purpose — as we see in Section 6.1 —is to provide an im-
mutable ledger that prevents split-view attacks. Because the Bitcoin
blockchain is currently the most expensive to attack, we use it here
and in our security analysis in Section 6.1, but observe that any
blockchain could be used in its place. An authority must initially
establish a known Bitcoin address that Contour commitments are
published with. As knowledge of the private key associated with
the Bitcoin address is required to sign transactions to spend trans-
action outputs sent to the address, this acts as the root-of-trust for
the authority. This address can be an embedded value in the auditor
software. An initial amount of coins must be sent to the Bitcoin
address to enable it to start making transactions from the address.

5.2 Logging and publishing statements

To start, the authority receives information from services; i.e., soft-
ware binaries from the developers of the relevant packages (Step 1
of Figure 1). As it receives such a binary, it incorporates its hash
as a leaf in a Merkle tree with root ht. The root, coupled with the
path down to the leaf representing the binary, thus proves that the
authority has seen the binary, so we view the root as a batched
statement attesting to the fact that the authority has seen all the
binaries represented in the tree. Once the Merkle tree reaches some
(dynamically chosen) threshold n in size, the authority runs the
commit algorithm (Step 2 of Figure 1) as follows:

commit(ht): Form a Bitcoin transaction in which one of the out-
puts embeds At by using OP_RETURN. One of the inputs must be
a previous transaction output that can only be spent by the au-
thority’s Bitcoin address (i.e. a standard Bitcoin transaction to
the authority’s address). The other outputs are optional and may
simply send the coins back to the authority’s address, according to
the miner’s fees it wants to pay. (See Section 7.2 for some concrete
choices.) Sign the transaction with the address’s private key and
publish to the Bitcoin blockchain and return the raw transaction
data, denoted tx.

Crucially, the commit algorithm stores only the root hash in the
transaction, meaning its size is independent of the number of state-
ments it represents. Furthermore, if the blockchain is append-only —
i.e., if double spending is prevented — then the log represented by
the commitments in the blockchain is append-only as well.

5.3 Proving inclusion

After committing a batch of binaries to the blockchain, the authority
can now make these binaries accessible to clients. When a client
requests a software update, the authority sends not only the relevant
binary, but also an accompanying proof of inclusion, which asserts
that the binary has been placed in the log and is thus accessible to
monitors (Step 3 of Figure 1).

To generate this proof, the authority must first wait for its trans-
action to be included in the blockchain (or, for improved security,
for it to be embedded k blocks into the chain). We denote the header
of the block in which it was included as headg. The proof then
needs to convince anyone checking it of two things: (1) that the
relevant binary is included in a Merkle tree produced by the au-
thority and (2) that the transaction representing this Merkle tree

is in the blockchain. Thus, as illustrated in Figure 2, this means
providing a path of hashes leading from the values retrieved from
the blockchain to a hash of the statement itself.
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Figure 2: An example of a path of hashes leading from the
block’s transactions Merkle root to the hash of bins.

For a given binary bin, the algorithm prove_incl thus runs as
follows:

prove_incl(tx, headp, bin): First, form a Merkle proof for the in-
clusion of tx in the block represented by headg. This means form-
ing a path from the root hash stored in headp to the leaf repre-
senting tx; denote these intermediate hashes by 7ix. Second, form
a Merkle proof for the inclusion of bin in the Merkle tree repre-
sented by tx (using the hash ht stored in the OP_RETURN output)
by forming a path from hr to the leaf representing bin; denote
these intermediate hashes by ;. Return (headp, tx, 7, Tpin)-

5.4 Verifying inclusion

To verify this proof, the auditor must check the Merkle proofs, and
must also check the authority’s version of the block header against
its own knowledge of the Bitcoin blockchain. This means that the
auditor must first keep up-to-date on the headers in the blockchain,
which it obtains by running an SPV client (Step 4 in Figure 1). By
running this client, the auditor builds up a set S = {headsp, }; of
block headers, which it can check against the values in the proof of
inclusion. This means that, for a binary bin, check_incl (Step 5 in
Figure 1) runs as follows:

check_inc1(S, bin, (headp, tx, 7, pin)): First, check that headg €
S; output 0 if not. Next, extract At from tx (using the hash stored
in the OP_RETURN output), form hy,;,, < H(bin), and check that
Thin forms a path from the leaf hy;, to the root k7. Finally, form
hix < H(tx), and check that 7ix forms a path from the leaf hiy to
the root hash in headp. If both these checks pass then output 1;
otherwise output 0.

As well as verifying the inclusion proof, the auditor must also
check that the address that the proof’s transaction was sent from
matches the authority’s address (i.e. one of the transaction inputs
must be a previous transaction output that can only be spent by
the authority’s address).



5.5 Ensuring availability

Independently of auditors, monitors must retrieve all commitments
associated with the authority from the blockchain and mirror their
binaries (Steps 6 and 7 of Figure 1). This means get_commits runs
as follows:

get_commits(): Retrieve all transactions in the blockchain sent
with the authority’s address, and return the hashes stored in the
OP_RETURN outputs.

After checking the binaries against their commitments, the mon-
itors then inspect them — to, e.g., ensure they are not malware — in
ways we consider outside of the scope of this paper.

While the system we have described thus far functions correctly
and allows monitors to detect if an authority has committed to a
binary but not published it, in order to make the binaries themselves
available for inspection, we assume the monitors can mirror the
authority’s logs. It therefore fails to satisfy our goal of availability
in the event that the authority goes down at some point in time.

We thus consider the case where the authority commits binaries
to the blockchain, but — either intentionally or because it loses the
data sometime in the future — does not supply the data to moni-
tors. While this is detectable, as monitors can see that there are
commitments in the blockchain with no data behind them, to disin-
centive this behavior requires some retroactive real-world method
of punishment. More importantly, it prevents the monitor from pin-
pointing specific bad actions, such as malicious binaries, and thus
from identifying potential victims of the authority’s misbehavior.

Because of this, it is thus desirable to not only enable the de-
tection of this form of misbehavior, but in fact to prevent it from
happening in the first place. One way to achieve this is to have au-
ditors mirror the binary themselves and send it to monitors before
accepting it, to ensure that they have seen it and believe it to be
benign. While this would be effective, and is arguably practical in a
setting such as Certificate Transparency (modulo concerns about
privacy) where the objects being sent are relatively small, in the
setting of software distribution — where the objects being sent are
large binaries — it is too inefficient to be considered.

Instead, we propose a new actor in the ecosystem presented
in Section 4: archival nodes, or archivists, that are responsible for
mirroring all data from the authority (Steps 8 and 9 in Figure 1).
To gain the extra guarantee that the data is available to monitors,
auditors may thus use any archival nodes of which they are aware
to check their state (i.e., the most recent block header for which
they have data from the authority) and ensure that they cover the
block headers relevant to the proofs they are checking (Step 10 in
Figure 1). This means adding the following two algorithms to the
list in Section 4.2:

Archivist.get_commits(): The archivist runs this algorithm to ac-
cess the commitments made by the authority, just as is done by
the monitor (using the same algorithm).

Auditor.get_arch_state(): The auditor (optionally) runs this al-
gorithm to obtain the state of any archivists of which it is aware.
This is simply the latest block header for which the archival node
has mirrored the data behind the commitments held within.

Using archival nodes makes it possible to continue to pinpoint
specific bad actions in the past (e.g., the publication of malware),

even if the authority loses or stops providing this data, but we stress
that their usage is optional and affects only availability. Essentially,
archival nodes allow for a more granular detection of the misbehav-
ior of an authority, but do come at the cost of requiring additional
nodes to store a potentially large amount of data. If such granularity
is not necessary, or if the system has no natural candidates with the
necessary storage requirements, then archival nodes do not need to
be used and the system still remains secure. In Section 8 we explore
the role of the archival nodes in the Debian ecosystem and discover
that, while the storage costs are indeed expensive, there is already
at least one entity playing this role.

6 EVALUATION

In this section, we evaluate Contour in terms of how well it meets
the security goals (Section 6.1) and deployability goals (Section 6.2)
specified in our threat model in Section 4.3. We also compare it
with respect to previous solutions in Section 6.3, and argue that it
is the only system to achieve all our goals.

6.1 Security goals

6.1.1  No split views (S7). In order to prevent split views, we rely
on the security of the Bitcoin blockchain and its associated proof-
of-work-based consensus mechanism. If every party has the same
view of the blockchain, then split views of the log are impossible,
as there is a unique commitment to the state of the log at any given
point in time. The ability to prevent split views therefore reduces
to the ability to carry out attacks on the Bitcoin blockchain.

If, for whatever reason, the adversary cannot carry out an eclipse
attack, then it can perform a split-view attack only if it can fork the
Bitcoin blockchain. This naively requires it to control 51% of the
network’s mining power, which we estimate would cost roughly
2043M USD in electricity and hardware costs as of December 2017
(see Appendix A for the analysis). Regardless of the exact number, it
is generally agreed that carrying out such an attack is prohibitively
expensive.

If an eclipse attack is possible, due to the adversary’s MitM
capability, the adversary can “pause” the auditor at a block height
representing some previous state of the log, and can prevent the
auditor from hearing about new blocks past this height. It is then
free to mine blocks at its own pace, and so performing a split-
view attack would be significantly cheaper. As a key distinguishing
property of Contour’s threat model is that split-view attacks should
be prevented even in the face of an adversary that can carry out
such attacks, it is important to consider the nuances and costs of
this attack, especially as we are not aware of any previous literature
considering the costs of eclipse attacks on Bitcoin nodes.

The cost of performing an eclipse attack depends on how much
time the adversary has to perform a split-view attack, as the hash
rate depends on the number of mining rigs available. As a rough
estimate (see Appendix A for calculations), if auditors consider a
Bitcoin transaction to be confirmed after 6 blocks (the standard for
most Bitcoin wallets), then as of December 2017 the attack would
cost 8.3M USD if the adversary wants to perform the attack within
a week. This would mean, however, that the auditor would receive
a new block only every 1.4 days, which would be detectable as an
eclipse attack. If auditors conservatively require that new blocks



arrive in intervals of up to three hours before assuming that they
are the victim of an eclipse attack, then as of December 2017 an
attack would cost roughly 91.8M USD.

6.1.2  Availability (52). While the decentralized (and thus fully
replicated) nature of the blockchain can guarantee availability, it
guarantees these properties only with respect to the commitments
to statements made by the authority, rather than with respect to
the statements — and thus the binaries — themselves. As discussed
in Section 5.5, the use of the blockchain thus does not guarantee
that binaries are actually available for inspection, or will continue
to be into the future.

Even just using monitors, Contour can already detect that an
authority committed a statement without making the statement
data (i.e., the actual binaries) available. Using the archival nodes
introduced in Section 5.5, we can achieve a stronger notion of
availability — in which as long as the binaries have been published
at some point they can be retrieved indefinitely into the future —
as long as these nodes are honest about whether or not they have
mirrored the relevant data.

In binary transparency, many ISPs and hosting providers already
provide their customers local mirrors of Debian repositories. We
therefore envision that ISPs can act as archival nodes on behalf
of their hosting clients, which creates a decentralized network of
archival nodes. We elaborate on the overheads required to do so in
Sections 7.2 and 8.

6.1.3  Auditor privacy (53). Recall from Section 4.2 that one of
the goals of Contour was to avoid prolonged interactions and en-
gage only in the atomic exchange of messages. In particular, the
auditor receives pre-formed proofs of inclusion from the authority
(as opposed to having to request them for specific binaries, as they
would in all certificate and key transparency systems), retrieves
commitments directly from the blockchain, does not engage in any
form of gossip with monitors, and receives the latest block hash
from archival nodes without providing any input of its own. We
thus achieve privacy by design, as at no point does the auditor
reveal the statements in which it is interested to any other party.

One particular point to highlight is that Contour achieves auditor
privacy despite the fact that auditors run SPV clients, which are
known to potentially introduce privacy issues due to the use of
Bloom filtering and the reliance on full nodes. This is because the
proofs of inclusion contain both the raw transaction data and the
block header, so the auditor does not need query a full node for the
inclusion of the transaction and can instead verify it itself (and, as
a bonus, saves the bandwidth costs of doing so).

6.2 Deployability goals

6.2.1 Efficiency (D1). Table 1 summarizes the computational
complexity of each of the operations required to run Contour, and
Table 2 summarizes the size complexity (which in turn informs the
bandwidth requirements, as we explore further in Section 7.2).

As we will see in Sections 7.2 and 8, in real deployments of Con-
tour there are already significant storage costs for the authority
and archival nodes, as they must store the full set of binaries. It
therefore does not impose a significant additional burden to have
them perform relatively inefficient (i.e., linear in n) operations or

Operation Time complexity
commit O(ns)
prove_incl (one-time) O(log(nt))
prove_incl (per statement) O(log(ns))

check_incl O(log(ng) + log(nT))

Table 1: Asymptotic computational costs for the operations
of Contour, where ng is the number of statements in a batch
and nt is the number of transactions in a block.

Object Size Complexity
Inclusion proof O(log(ng) + log(nT))
Log commitment (tx) 0(1)
Archival node data overhead O(ns)

Table 2: Asymptotic storage costs for the objects in Contour,
where ng is the number of statements in a batch and n7t is
the number of transactions in a block.

store relatively inefficient objects. As for the end-user devices on
which the auditor is run, we impose a relatively minimal perfor-
mance overhead (with everything logarithmic in ng and/or nr),
and confirm this in Section 7.2.3.

6.2.2 Minimal setup (D2). In terms of coordination, the only
setup requirement in Contour is the role of the archival nodes, as
the rest is just a matter of adding software. As we will see in Sec-
tion 8 when we look at Debian, in some settings there are already
natural candidates for these actors, but if these actors are not in-
terested in the guarantees of Contour then we can still deploy it
without requiring the existing actors to change their behavior. More
importantly, there are no trust requirements placed on these nodes
to prevent log equivocation: even if archival nodes misbehave, mon-
itors can still individually detect misbehavior by an authority that
publishes commitments but not the underlying data. This is in stark
contrast to previous solutions that require the initial establishment
of a semi-trusted set of nodes.

6.3 Comparison with existing solutions

To fully pinpoint both the benefits and tradeoffs of Contour, we
compare it with several known systems designed to provide trans-
parency. In particular, we consider the tradeoffs as compared to Cer-

tificate Transparency (CT), Collective Signing (CoSi) [30], CONIKS [24],

and Bitcoin. We summarize these tradeoffs in Table 3.

Looking at Table 3, we first mention that the efficiency numbers
for CoSi are somewhat misleading, as there is no global log and
thus no notion of checking inclusion in the log; this is why we list
the efficiency costs as constant. In fact, only Bitcoin and Contour
ensure a globally consistent ledger, as certificates are stored in a
distributed set of logs in CT and CONIKS and there is no proposed
method for achieving consensus amongst them.

Arguably the main benefit of both CT and CONIKS is their effi-
ciency, as the auditor is required to store only a single hash. The
tradeoff, however, is that they cannot prevent the authority from
launching a split-view attack, but instead rely on gossiping mech-
anisms to detect such misbehavior after the fact. As discussed in



Security goals (S1-S3)

Deployability goals (D1-D2)

Split views  Availability —Auditor privacy Efficiency (cost) Efficiency (size) Minimal setup

CT detect no” no
CoSi prevent yes® yes
CONIKS detect no no
Bitcoin prevent yes yes
Contour prevent yes yes

log(n) 1 no
1 1 no
log(n) 1 no
n n yes
log(n) b yes

Table 3: A comparison between existing solutions and Contour in terms of the five goals presented in Section 4.3. For efficiency,
we measure the asymptotic costs for the auditor in terms of both the computations it must perform (‘cost’) and the data it must
store (‘size’). We use n to denote the number of statements and b to denote the number (but not size) of blocks in the Bitcoin
blockchain. For CoSi, availability is not a explicit requirement, but can be satisfied as long as at least one witness retains the
data, and for CT it is not satisfied by the basic design but could be if auditors and monitors gossiped about certificates.

the introduction, this is problematic in a setting — like binary trans-
parency — in which adversaries can launch persistent man-in-the-
middle attacks. These systems also do not achieve robust privacy
for the auditor, as it must periodically reveal information to the
authority (or the monitor) about the objects in which it is interested.

The other main tradeoff we observe is, perhaps unsurprisingly,
between efficiency and setup costs. The first three systems all re-
quire the establishment of some initial set of distributed entities —
in the case of CT, log servers are essentially authorized by Google,
in the case of CONIKS, identity providers are chosen by users and
listed in a PKI, and in the case of CoSi, witnesses must form a Sybil-
free set — that are trusted to some extent (if not individually, then
as a group). We require no such setup, which means Contour is
much more easily integrated into existing systems.

In contrast, in both Bitcoin and Contour, the blockchain is main-
tained by a decentralized network and is not subject to intervention
by central authorities. While Contour mitigates the inefficiency
of Bitcoin, it still requires the auditor to store some information
from all the block headers. We show in the next two sections that
Contour is nevertheless efficient enough to be practical, but leave it
as an interesting open problem to investigate to which extent these
tradeoffs between efficiency and decentralization are inherent.

7 IMPLEMENTATION AND PERFORMANCE

To test Contour and analyze its performance, we have implemented
and provided benchmarks for a prototype Python module and
toolset that developers can use. We have released the implementa-
tion as an open-source project.>

7.1 Implementation details

The implementation consists of roughly 1000 lines of Python code,
and provides a set of developer APIs and corresponding command-
line tools. We used SHA-256 as the hashing algorithm to build
Merkle trees, and modified versions (for Bitcoin compatibility) of an
existing Merkle tree implementation (https://github.com/jvsteiner/
merkletree) and a Python-based Bitcoin library pycoinnet (https:
//github.com/richardkiss/pycoinnet/) in order to develop our Merkle
tree and SPV client, respectively.

Authority: We provide API calls for Authority.commit, which
commits batches of statements to the Bitcoin blockchain, and

Shttps://github.com/musalbas/contour

Authority.prove_incl, which allows it to generate inclusion proofs
for individual statements.

Auditor: We provide an API call for Auditor.check_incl, which
allows end-user software to verify proofs of inclusion. We also
provide an Auditor.sync call that uses the Bitcoin SPV protocol to
download and verify all the block hashes in the Bitcoin blockchain,
so that inclusion proofs can be efficiently verified independently
of third parties. (This call needs to be run only once.)

Monitor: We provide an API call for Monitor.get_commits, which
gets all the statement batches associated with a specific authority.
Monitors can then use these commitments to check the validity
of the statement data (which they can retrieve from the authority
or an archival node using a web server), and do whatever manual
inspection is necessary; we consider this functionality outside of
the scope of this paper.

Archival node: The archival node API can be used to operate an
archival node, by specifying the authority’s Bitcoin address and
web address where statement data is published. The archival state
and mirrored statement data is stored as flat files on disk, allowing
the archival node to provide access to auditors and monitors by
running a web server. By accessing the archival state viaa HTTPS
server, auditors can securely authenticate the state of the archival
node using public-key cryptography.

7.2 Performance

To evaluate the performance of our implementation, we tested
all the operations listed above on a laptop with an Intel Core i5
2.60 GHz CPU and 12 GB of RAM, that was connected to a WiFi
network with an Internet connection of 5 Mbit/s. We also assume
that a batch to be committed contains 1 million statements, although
as was seen in Table 1 — and will be confirmed later on in Figure 3 —
these numbers scale as expected (either logarithmically or linearly),
so it is easy to extrapolate the results for other batch sizes given
the ones we present here.

We consider the complexity of these operations in terms of their
computational, storage, and bandwidth requirements. A summary
of our timing benchmarks can be found in Table 4, and our band-
width requirements are in Table 5.

7.2.1  Number of transactions per block. The overhead of both
generating and verifying a proof of inclusion is dependent on the
number of transactions in a Bitcoin block. To capture the worst-case


https://github.com/jvsteiner/merkletree
https://github.com/jvsteiner/merkletree
https://github.com/richardkiss/pycoinnet/
https://github.com/richardkiss/pycoinnet/

Operation Time (us) o (us)
commit 5.93(s) 0.297 (s)
prove_incl (one-time) 8.5 5.4
prove_incl (per statement) 12 6.4
check_incl 224 62.14

Table 4: Average time of individual operations, and stan-
dard deviation o, when the batch size is 1M. The timings for
commit were averaged over 20 runs, and for prove_incl and
check_incl over 1M runs. The timings for commit are in bold
to emphasize that they are in seconds, not microseconds.

Operation Bandwidth
Authority.commit (using APIs) 1MB
Authority.commit (one-time setup for full node) 126 GB
Authority.commit (using full node) 235B
Auditor.sync 37.4MB
Auditor.prove_incl 1.3kB

Table 5: The bandwidth cost of operations, when the batch
size is 1M. The cost of Authority.commit depends on whether
or not the authority is running a full Bitcoin node or relying
on third party APIs. For running a full node, there is a one-
time setup cost to synchronize the blockchain.

scenario, we consider the maximum number of transactions that
can fit into a block. Currently, the Bitcoin block size limit is 1 MB,
up to 97 bytes of which is non-transaction data. The minimum
transaction size is 166 bytes, so the upper bound on the number of
transactions in a given block is 6,023. While this is far higher than
the number of transactions that Bitcoin blocks currently contain,®
we nevertheless use it as a worst-case cost and an acknowledgment
that Bitcoin is evolving and blocks may grow in the future.

7.2.2  Authority overheads. To run commit and prove_incl, an
authority must have access to the full blocks in the Bitcoin blockchain,
as well as the ability to broadcast transactions to the network.
Rather than achieve these by running the authority as a full node,
our implementation uses external blockchain APIs supplied by
blockchain.info and blockcypher.com. This decision was based on
the improved efficiency and ease of development for prototyping,
but it does not affect the security of the system: authorities do not
need to validate the blockchain, as invalid blocks from a dishon-
est external API simply result in invalid inclusion proofs that are
rejected by the auditor.

To run commit, an authority must first build the Merkle tree
containing its statements. Sampled over 20 runs, the average time
to build a Merkle tree for 1M statements was 5.9 s (0 = 0.29 s). After
building the tree, an authority next embeds its root hash (which is
32 bytes) into an OP_RETURN Bitcoin transaction to broadcast to the
network. Sampled over 1,000 runs, the average time to generate this
transaction — in the standard case of one input and two outputs,
one for OP_RETURN and one for the authority’s change — was 0.03 s
(o =0.007 s). The average total time to run commit was thus 5.93 s,
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as seen in Table 4, and it resulted in 235 bytes (the size of the
transaction) being broadcast to the network.

Next, to run prove_incl, the authority proceeds in two phases:
first constructing the Merkle proof for its transaction within the
block where it eventually appears, and next constructing the Merkle
proof for each statement represented in a transaction. The time
for the first phase, averaged over 1M runs and for a block with
6,023 transactions (our upper bound from Section 7.2.1), was 8.5 ps.
This is denoted “one-time” in Table 4 as it is done only once per
batch. The time for the second phase, averaged over 1M runs, was
12 ps for each individual statement (thus denoted “per statement”
in Table 4). Generating inclusion proofs for all the statements in
the batch would thus take around 12 s. In terms of bandwidth and
storage, a block up to 1 MB in size needs to be downloaded in order
to generate the inclusion proof from the block’s transaction Merkle
tree. In terms of the memory costs, the size of the Merkle tree for
1M leaves in memory is 649 MB.

Additionally, in order to ensure that its transaction makes it
into a block quickly, the authority may want to pay a fee. The
recommended rate as of December 5 2017 is 154 satoshis/byte (https:
//bitcoinfees.info), so for a 235-byte transaction the authority can
expect to pay 36,190 satoshis. As of December 5 2017, this is roughly
4.21 USD. We stress, however, that the Bitcoin price is notoriously
volatile (for example, the same transaction would have cost only
0.28 USD at the beginning of 2017), so this and all other costs stated
in fiat currency should be taken with a grain of salt.

7.2.3 Auditor overheads. For the auditor, we considered two
costs: the initial cost to retrieve the necessary header data (sync),
and the cost to verify an inclusion proof (check_incl). We do not
provide benchmarks for the Auditor.get_arch_state call, as this
is a simple web request that returns a single 32-byte hash.

To run sync, auditors use the Bitcoin SPV protocol to download
and verify the headers of each block, which are 80 bytes each. As
of December 5 2017, there are 497,723 valid mined blocks, which
equates to 39.8 MB of block headers. Once downloaded, however,
the auditor needs to keep only the 32-byte block hash, so only
15.9 MB of data needs to be stored on disk. Going forward, the
Bitcoin network generates approximately 144 blocks per day, so the
amount of downloaded data will be 11.5kB daily, and the amount
of stored data will increase by 4.6 kB daily.

To verify the validity of the block headers in the chain, the
client must perform one SHA-256 hash per block header; averaged
over five runs, it took us 116 seconds for the Python SPV client to
download and verify all the block headers. This initial bootstrapping
process needs to be performed only once per auditor.

To run check_incl, we again use our upper bound from Sec-
tion 7.2.1 and assume every block contains 6,023 transactions. This
means the inclusion proof contains: (1) an 80-byte block header;
(2) the raw transaction data, which is 235 bytes; (3) a Merkle proof
for the transaction, which consists of log(6023) — 1 32-byte hashes
(the root hash is already provided in the block header); and (4) a
Merkle proof for the statement, which consists of log(1000000) — 2
32-byte hashes (the root hash is already provided in the transaction
data, and the auditor computes the statement hash itself). The total
bandwidth cost is therefore around 1275 bytes. Averaged over 1M
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Figure 3: The time to verify an inclusion proof with varying
batch sizes, averaged over 100K runs.

runs, the time for the auditor to verify the inclusion proof was
224 ps (o0 = 62.14 ps).

To confirm that the time to run check_incl scales logarithmi-
cally with the number of statements in the batch, we also ran it for
varying numbers of statements. The results are in Figure 3.

7.2.4  Monitor overheads. Monitors must run a Bitcoin full node
in order to get a complete uncensored view of the blockchain. As
of December 2017, running a full node requires 145 GB of free disk
space, increasing by up to 144 MB daily. It took us around three
days to fully bootstrap a full node and verify all the blocks, although
this operation needs to be performed only once per monitor.

7.2.5 Archival nodes overheads. Like monitors, archival nodes
need to run a Bitcoin full node. Additionally, archival nodes must
download and store all the data from the authority. The costs here
are entirely dependent on the number and size of the statements;
we examine the costs for Debian in Section 8.

In order for archival nodes to know which statement data to
download from authorities to independently rebuild the Merkle
tree roots committed in Bitcoin transactions and check that they
match with the data provided, authorities must point the archival
nodes to the location of the data. Again, this is dependent on the
mechanism that the authority uses to make the data available.

As in Debian, however, archives use statements that represent
files. We may therefore expect that, in addition to a Merkle tree,
authorities would use metadata files to link each leaf in the tree to
a file on the server that archival nodes then mirror; this would be
particularly useful in a setting — like Debian — where it would be
undesirable to reorganize files that are already stored. The metadata
file would consist of a mapping of 32-byte hashes to filenames. The
average Debian package filename is 60 bytes, so including such
a metadata file would introduce an average storage overhead, for
both authorities and archival nodes, of 92 bytes per statement.

8 USE CASE: DEBIAN

To demonstrate how Contour can be used on a real system, we
prototyped it for auditing software binaries in the Debian software
repository. Our results show that Contour provides a way to add
transparency to this repository without major changes to the exist-
ing infrastructure and with minimal overheads. It could be deployed
on top of the Debian ecosystem today, without any participant who
did not want to opt in having to change their behavior.

We begin with an overview of how Debian currently works, and
then go on to explain how existing actors in the ecosystem could
play the roles necessary for Contour, along with the overheads.

8.1 Software distribution architecture

Debian is a popular Linux distribution used by over 32% of websites
that run Linux.” Software packages are installed and updated on
Debian machines using the apt command-line program. The Debian
software repository contains Release files for various versions of
Debian, which are updated every time any package in the repository
is updated. Each Release file contains a checksum for a Packages
file, which contains a list of available software packages and their
associated checksums for integrity checking.

Software packages are downloaded as .deb archives which pro-
vide the compiled binaries and scripts required to install a package
on a system. These files are hosted in directories on HT'TP mirrors,
of which hundreds exist around the world.®

To cryptographically authenticate software packages, Debian
has a set of tools called apt-secure. Debian installations come
with a built-in set of PGP keys [15] that are used as trusted keys for
validating software packages. Alongside the Release files in the
repository, there are Release. gpg files that contain PGP signatures
of the Release files under trusted PGP keys.’

Through the single signature of a Release file, apt can validate
that individual . deb packages were authorised by a trusted PGP
key by checking that the checksums of packages are included in
the Packages file whose checksum is included in the root Release
file. This of course creates a central point of failure, as the owner of
the signing key can serve individual users targeted Release files —
for example, if coerced to do so by law enforcement — that link to
malicious packages.

8.2 Authority

In the case of Debian software distribution, the most natural oper-
ators for a Contour authority are the maintainers of the software
repository. Specifically, the Contour authority would be the owner
of the PGP key, as only this entity has the power to modify the
software repository. Importantly, it is also possible for third parties
to act as Contour authorities by proxy and commit binaries to the
log on behalf of the maintainers of the Debian software repository.
As committed binaries are transparent, the third party is not trusted
any more than the maintainers of the Debian software repository
would be, as any rogue additions to the log would still be detectable.
This means it would be possible to deploy Contour today without
any intervention or permission from the Debian project itself.

"https://w3techs.com/technologies/details/os-linux/all/all
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To initiate the system as an authority, all the existing software
packages would first need to be committed; i.e., the authority would
need to commit to the current state of the repository. To measure the
overhead needed for this step, we extracted the software package
metadata for all processor architectures and releases of Debian from
the Debian FTP archive (https://www.debian.org/mirror/ftpmirror)
over a one-week period from January 20-27 2017. At the beginning
of this period there were 976,214 unique software binaries available
for download from the Debian software repositories, constituting
1.7 TB of data, and by the end there were 980,469.

As discussed above, the Debian package metadata already con-
tains a SHA-256 hash for every packages, so we needed only to
build a Merkle tree from these hashes (rather than compute them
ourselves first), to then commit on the blockchain. This took ap-
proximately 6 seconds (which is in line with our benchmarks in
Table 4 for 1M statements).

Going forward, the authority must commit batches of new and
updated binaries to the log. The Debian FTP archives are updated
four times a day, which means four batches to commit to the log
per day. Recall from Section 7.2.2 that committing one transaction
to the blockchain currently costs roughly 4.21 USD in fees, so this
would cost 16.84 USD per day (although, as mentioned in Section 7,
Bitcoin prices are notoriously volatile). This is a relatively low price
to pay for a system that costs over 91M USD to attack (Section 6.1).

As the archive was updated, we kept track of the package hashes
being added and created a new batch for each update. The average
batch size was 1,040 packages, and the average time to build a
Merkle tree for the batch was 0.0052 seconds.

As discussed in Section 7.2.5, we can also enable archival nodes
to rebuild Merkle trees with minimal changes to the existing De-
bian archive infrastructure. This requires creating and storing only
an additional 84 kB metadata file per batch, and an initial 79 MB
metadata file. These metadata files consist of a mapping of hashes
of software packages to their filenames in the Debian archives.

Finally, the proof of inclusion of each software package would
need to be stored alongside each software package (.deb) file as
metadata to be downloaded by Debian machines. At 980K software
packages, this would require a maximum of 1.3 kB of extra storage
per package, or 1.3 GB of extra storage to store the proofs of inclu-
sion for all packages. Given the current storage requirements of (at
least) 1.7 TB, this is only a 0.07% overhead.

8.3 Auditors

On the end-user side, the apt program would need to be modi-
fied to integrate the Auditor.check_incl and Auditor.sync calls,
as implemented and analyzed in Section 7. This would ensure that
downloaded packages are in the log before being installed.

In terms of overhead for end-user Debian machines, as discussed
above this would require an extra 1.3 kB of bandwidth per package
downloaded or updated. Given that the average package size is
1337 kB, the average overhead is 0.1% per package. We stress that
this is a bandwidth requirement only, as once the proofs of inclusion
are verified they do not need to be stored on the client’s machine.

On a freshly installed Debian 8.8 system there are 520 packages
installed by default, with a total . deb archive size of 190 MB. Verify-
ing that each of these are in the log would require an extra 698.1 kB
of bandwidth, and would take under two minutes.

8.4 Monitors

Debian’s reproducible builds project allows any interested parties
to verify that binaries published in the software repositories are
compiled from a given source code.!? There are no specific parties
assigned to the role of monitoring builds to see if they can be built
from the source code. Similarly in Contour, any parties vested in the
security of Debian may act as a monitor. Aside from end users, we
anticipate that large organizations supplying critical infrastructure
using Debian, national CERTs, and NGOs such as the Electronic
Frontier Foundation would have an interest in monitoring the log.
Generally, any party that wants extra guarantees about the soft-
ware updates they are installing — e.g., in order to be sure that the
updates that have been pushed to their machines are the same
as those that have been pushed to other machines — should run a
monitor. For example, if a party running Debian receives update;
and update; on their machine for some software package, but the
log contains update;, update,, and update,, then this raises a red
flag as to why they did not receive update,. In particular, update,
may be a malicious update targeted to specific machines, and the
party can check to see if the contents of update, have been made
available by the authority. If they have not, then the authority is
considered to be misbehaving. Optionally, honest archival nodes
would prevent auditors from accepting the update altogether.

8.5 Archival nodes

There are 269 Debian mirrors hosting the full 1.7 TB archive, and
we view these servers as the most natural candidates for operating
archival nodes. The difference between a mirror and an archival
node is that to fully satisfy availability an archival node should
not delete any packages (even when packages are updated and
removed), in order to enable monitors to examine obsolete packages.
In terms of overhead for archival nodes, this means storing the
initial 1.7 TB, and then an additional average of 11 GB per day,
or 4TB per year. This is by far the highest overhead incurred by
our system, and we expect that only a small number of mirrors
would have the storage capacity to run an archival node. We stress
that the use of archival nodes is optional and serves only to boost
availability (as opposed to being required for integrity); moreover,
there is currently at least one mirror hosting all historical Debian
packages, so effectively already acting as an archival node!!.

8.6 Summary

In summary, Contour could be deployed on top of the existing
system for Debian software distribution with minimal changes to
the existing infrastructure. In terms of operating costs, the biggest
overhead required to enable Contour is the extra storage space re-
quired for archival nodes (and again, this cost is optional). All other
costs are minimal, with only a 0.07% storage overhead required for

Ohttps://wiki.debian.org/ReproducibleBuilds
snapshot.debian.org/
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the authority, and a 0.1% bandwidth overhead for the end user. The
computational costs for these users are minimal as well.

One distinguishing feature of Contour is that no existing parties
in the Debian infrastructure are required to participate if they do
not want to, and as discussed earlier the security assumptions of
the system would remain the same even if a third party acted as an
authority. This places Contour in contrast to existing proposals for
transparency (including some of the ones presented in Section 6.3),
as they require the initial setup of some Sybil-free set of nodes.
In contexts such as the distribution of Debian software packages,
this assumption — and the security implications if it is violated —
presents a significant obstacle to deployability, and avoiding this
obstacle was one of our main goals in designing Contour.

9 DISCUSSION AND EXTENSIONS

Selective disclosure. When releasing software updates that patch
critical security vulnerabilities, some software vendors may prefer
not to reveal to potential attackers that, in the window of time in
which a commitment has not yet been included in the blockchain,
they can take advantage of victims with this vulnerable software
installed. In such a case, Contour accounts for this by allowing the
authority to commit to a batch of binaries visibly on the blockchain,
but delay the publication of the binaries themselves until the com-
mitment is sufficiently deep in the blockchain.

Generalized transparency. Although we have designed Contour
for the specific application of binary transparency, the system is
general enough to be applied to other applications requiring trans-
parency. With the tradeoffs discussed in Section 6.3, it can even
be applied to the setting of certificate transparency by using CAs
as authorities, although it may be most beneficial in settings that
present similar challenges to the ones discussed in the introduction
(i-e., in which objects are large and persistent MitM attacks are a
realistic threat).

Archival node scalability. The current design of Contour requires
archival nodes to store all data, which as we have discussed in
Section 8 incurs a significant overhead. There are likely many alter-
native designs that alleviate these requirements, such as a sharded
solution in which archival nodes store only the data for which they
sufficient space, and we leave an exploration of this space as an
interesting open problem.

10 CONCLUSION

We have proposed Contour, a system that provides proactive trans-
parency, logarithmic scaling for auditors in the number of packages
they have installed, and does not require the initial coordination of
forming a Sybil-free set of nodes. We have demonstrated that, even
for attackers that are capable of performing persistent man-in-the-
middle attacks, compromising the integrity of the system requires
millions of dollars in energy and hardware costs. We also saw that
Contour could be applied today to the Debian software repository
with relatively low overhead to existing infrastructure, and with
no changes or coordination required for any participant (even the
Debian server) who does not wish to opt in.
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A COST OF A SPLIT-VIEW ATTACK

To support our argument in Section 6.1 about the infeasibility of
carrying out a split-view attack, we provide here more concrete
estimates for the associated costs of the attack. These are rough
estimates, as they make assumptions about certain properties (e.g.,
electricity costs and choice of mining hardware) that are not guaran-
teed to hold in practice. We are not aware of any previous literature
considering the costs of eclipse attacks on Bitcoin nodes, so we
consider these estimates (even if rough) to be important.

We first calculate the cost to mine a single block, and then analyze
the cost of performing a split-view attack in the case where the
adversary is able to perform an eclipse attack and where it cannot.

Cost to mine a single block. The probability of a miner finding

a valid block after each hashing attempt is 2214682)1, where D is the
periodically adjusted difficulty of the network. For a miner to mine
2214: 2 hashing attempts.
The total electricity cost (C) of mining a block is thus

a block then, they must make on average

248D

CZE'J‘E, (1)

where J is the number of joules required per hashing attempt, and
E is the electricity cost of one joule. As of December 2017, the most
energy-efficient Bitcoin mining hardware is the Antminer S9, which
has an energy cost of 9.82- 10711 joules per hash,'? and the average
retail price of one kilowatt hour in the US is 0.10 USD.!? The cost
per joule, E, is therefore % = 2.8-10"8 USD. As of December
2017, the Bitcoin mining difficulty (D) is 1,347,001,430,558. Plugging
these numbers into Equation 1, the total electricity cost to mine a
block, using the most efficient hardware and assuming standard
electricity costs, is thus 15,908 USD.

To also take hardware costs into account, the number of mining
rigs N needed to mine a block in S seconds is

( 248D
N = 2= 2
H-S @
where H is the number of hashes that the mining rig is capable of
calculating per second. This formula is graphed in Figure 4 for the
Antminer S9 rig, which is capable of calculating 14 terahashes per
second and has a retail cost of 2,400 USD.* We use these formulas
to estimate the cost of split-view attacks in the following analysis.

Using eclipse attacks. If an eclipse attack is possible, an adver-
sary can launch a successful split-view attack solely by mining k
blocks at its own pace, where k is the number of blocks the auditor
requires to be mined after a block containing a given commitment
in order to consider that commitment as valid. (It is standard in
most Bitcoin wallets to use k = 6.)

12en bitcoin.it/wiki/Mining_hardware_comparison
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Figure 4: The number of Antminer S9 rigs required to pro-
duce blocks under a certain time limit.

Using our rough estimates above, it would cost the adversary
15,908 USD in electricity costs to mine a block, or 95,448 USD for
k = 6. The hardware costs depends on how much time the adversary
needs to conduct the attack, or how long they are able to continue
their man-in-the-middle attack on the auditor. If — as a conservative
number — the adversary wants to conduct the attack within a week,
it must mine a block every 1.4 days to produce 6 blocks, which
requires 3,417 mining rigs at a hardware cost of 8,200,800 USD.
This brings the total cost of the attack to 8.3M USD. Moreover, this
attack is also fundamentally targeted: if the adversary wants to later
compromise previously non-eclipsed auditors, it must mine a new
set of blocks (assuming these auditors have more up-to-date blocks)
and pay the electricity costs again. Even for an adversary with few
financial constraints, this makes it significantly more difficult to
conduct such an attack on a wide scale.

Furthermore, if the adversary takes 1.4 days to mine a block,
or in general the auditor sees no new blocks until long after the
expected 10-minute interval, it may assume that an eclipse attack
is being performed. We can thus greatly increase the cost of the
attack by adding simple checks to the auditor to ensure that there
is a maximum interval between blocks. If we generously set such
a check to require a maximum of 3 hours between blocks, then a
total of 38,263 mining rigs are required at a cost of 91.8M USD.

In addition, the blocks must still follow the same difficulty level
as honest blocks, so by mining these only in the eclipsed view of
the network the adversary is not only expending the energy needed
to do so but is also forfeiting the mining reward associated with
them. As of December 5 2017, the Bitcoin mining reward is 12.5
bitcoins, or roughly 145,250 USD, so for k = 6 the adversary must
additionally forfeit 871,500 USD.

Ignoring eclipse attacks. To perform a split-view attack without
an eclipse attack, an adversary must fork the Bitcoin blockchain,
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which naively requires control of 51% of the network’s mining
power.

As of December 5 2017, the total hashing power of the Bitcoin
network was 11,918,845 terahashes per second.'® Conducting a 51%
attack would therefore require the adversary to be able to compute
more than 11,918,845 terahashes per second. Per hour, the total
electricity cost would be 11918845 - 102 - 3600 - J - E, or — using
our earlier estimates for J and E — 117,979 USD per hour. In terms
of hardware costs, if we use the figures for the Antminer S9 from
before, the total number of mining rigs required would be greater

than %ﬁfﬁwu = 851346, at a total cost of 2043M USD.

While more sophisticated attacks, such as selfish mining [12],
have proposed strategies that fork the blockchain using only 25%
of the mining power, this would still require an investment of
hundreds of millions of dollars. Such an attack would furthermore

be highly visible, as the blockchain is regularly monitored for forks.
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