
Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

1

Software Reconstruction: Patterns for Reproducing
Software Builds

Ralph Cabrera cabrerar@agcs.com AG Communication Systems

Brad Appleton bradapp@computer.org

Stephen P. Berczuk berczuk@acm.org NetSuite Development
Copyright © 1999 by Ralph Cabrera, Brad Appleton, and Stephen Berczuk.

Permission is granted to copy for the PLoP 1999 conference.
All other rights reserved.

Abstract: Software systems, as abstract, non-tangible entities, should be able to
be constructed faster and more efficiently compared to tangible objects. However,
software systems are actually more difficult to assemble. Tangible objects have
discrete components and are usually independent of their environment.
Components contributing to the build of a software system are not limited to
source code; moreover, they are not always obvious. Software that has been built
often cannot be reconstructed later. The software configuration management
patterns described here examine and resolve some of the forces regarding the
reconstruction of software systems.

Keywords: Version Control, Patterns, Software Configuration Management, Reproducibility, Repository,
Build.

Introduction
The implementation of Software Configuration Management (SCM) processes, practices,
and tools significantly affects the quality and timeliness in which a software product is
developed. A component of the quality and timeliness achieved is due to the affect that
SCM has on the configuration and production of the software. SCM provides the
capability to identify the de-composition (configuration) and re-composition (production)
of the software system structure. This paper presents some re-composition patterns from
a pattern language for SCM that we began developing at ChiliPLoP ’98.

The following excerpt is from Streamed Lines: Branching Patterns for Parallel Software
Development [Appleton et al] and lays the foundation for pattern languages in the SCM
domain.

Motivation for an SCM Pattern Language
There are many approaches to SCM, and the structures, policies, and processes work best when
applied in the appropriate context. This context is determined by organizational and architectural
decisions, as well as previously existing SCM policies. Our goal is to place SCM structures in the
context of these other existing structures, making it easier to decide how to structure an SCM
process which will be effective for your context.
These SCM structures may be described as " patterns": named nuggets of insight conveying battle-
proven solutions to recurring problems, each of which balances a set of competing concerns (see
[Appleton97]). SCM Patterns fit into a framework of Organizational Patterns, which can be
grouped as follows:

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

2

Organizational Patterns:

Patterns which define how the organization is
structured. This includes patterns that
describe the size of the team, management
style, etc. (see [Beedle97] and [OrgPats]).

Architectural Patterns:

Patterns which define how the software is
structured at a high level. Some examples of
these sorts of patterns have been published in
prior PLoP Proceedings ([Berczuk95] and
[Berczuk96]) and in books such as [POSA].

Process Defining (forming) Patterns:

These SCM Patterns describe structures, such
as the project directory hierarchy, which are
set up near the beginning of a project.

Maintaining (preserving) Patterns:

These are SCM patterns that affect the day to
day workings of the organization.

These categories of patterns are shown in the
figure at right.

The line between the Forming and Maintaining patterns may be blurry, but we feel the distinction
is conceptually important to understand the architecture of the development process pattern
language. Because of the strong relationship between the patterns in each category (how you set
up the directory tree affects the process you follow for checking files in and out) we shouldn't
spend too much time looking at where a pattern fits, but rather focus on which patterns it follows
from.

The patterns presented by this paper should be applied with an understanding of the
context in which the problem exists. The general context of the patterns is that of
composition, or in some cases re-composition, of the software system from various
components that contribute to the end product. These include, but are not limited to,
source code components as well as environment components. A portion of these patterns
belongs to the SCM Process Defining group because they establish how a project would
behave (defining process/policy). A portion of these patterns belongs to the SCM
Maintaining group because they describe how project would maintain the process/policy.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

3

Version
Repository

Shared
Source

Escalation

Shared
Object
Cache

Shared
Version
Cache

Reproducible
Build

Version-Controlled
Environment

Bill of
Materials

Legend
Context Relationship

Pattern

Implied

Daily Build
And

Smoke Test

Self-Identifying
Configuration

Archived
Environment

Figure 1 - Software Reconstruction Pattern Relationships

Forces
Common Forces among the patterns
• Faithful and exact reproducibility of software builds
• Isolation of desired changes
• Quality of software product
• Reduce or eliminate regression errors

Patterns
Patterns related to software reconstruction:
• Bill of Materials
• Self-Identifying Configuration
• Reproducible Build
• Daily Build and Smoke Test
• Shared Version Cache
• Shared Object Cache
• Shared Source Escalation
• Version-Controlled Environment
• Archived Environment

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

4

Bill of Materials

Context
You can successfully build the software system today, but you also need to build that
version of the system in the future.

Problem
How can you reproduce the build if you know that more than your source is required to
build the software system?

Forces
• Components are not co-located on same system.
• System is complex and/or large
• Software build processes are complex
• Previous builds of software system must be reproduced

Solution
Document all of the components that contributed to the build in a list, i.e., a bill of
materials (BOM). The BOM may contain the names, versions, and directory paths of
operating systems, libraries, compilers, linkers, make-files, build scripts, etc. The BOM
may be manually created, but many configuration management tools generate it as a by-
product of the build. Since the BOM is also a file, it should be placed under version
control and associated with the revision of version-controlled components that it
documents. This can be done applying the same label to the version of the BOM that was
used to identify the version of source code.

Resulting Context
The bill of materials identifies what components you need, where they can be found,
what versions they are, and how to assemble them to reproduce the software system. The
BOM can define the order in which the software components (source and libraries) are to
be assembled (compile and/or link order). Although the BOM identifies the source code
as one of the components of the build, the important purpose of the BOM is to identify
components that are not under version control directly (e.g., environment information,
compilers, linkers, et al).

Known Uses
Bills of material are commonly used by the manufacturing and construction industries for
product data management. In their domain, the BOM provides a way of faithfully
replicating the end product. It also serves as a cost analysis tool because it breaks down
the end product into components that can be individually priced.
In the software domain, Continuus' ObjectMake™ product creates a list of the following
to provide controlled, reproducible builds [Continuus]:
• Build platform data (OS, architecture)
• Full list of dependencies (controlled and uncontrolled objects)

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

5

• Commands and options used to create controlled product
• Makefile contents
• Makefile command line options
• Variant options
• Build environment

ClearCase and its "clearmake" tool have a notion of a "configuration record" (some other
build tools have this as well, though not all use the same name). When clearmake does a
build, it audits all access to all files in the workspace and records dependency
information. When it builds an executable, it creates a configuration record (config-rec)
for the build. The config-rec shows each pathname and revision of every file and derived
file used and generated as part of the build. For each generated (derived) file such as
object files, libraries, or GUI-code generation, it also records things like the time, the
exact command-line and options or flags used to generate that object, and any important
"flags" from the environment that clearmake knows about or was told to care about.
ClearCase uses labels to select versions in a workspace corresponding to a config-rec.
Config-rec's may (and often are) checked-in to the VC repository.

Related Patterns
A supporting pattern of Bill of Materials which is not documented in this paper is
Version-Control the Generated Deliverables which describes placing generated object
and/or executable components under version control for use in reconstruction.

Another pattern that supports Bill of Materials is Version-Control the Environment which
is documented in this paper.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

6

Self-Identifying Configuration

Context
You're tracking all changes made to the files using a version repository.

Problem
In isolation from the version repository, how do you know what version an extracted file
is and what configuration it belongs to?

Forces
• Extracted files lose association with version control.
• Developers may not know what version they're changing once the file is outside of

the version repository.
• Developers may not know the context (configuration) in which the file is being

changed
• Reviewers aren’t assured what versions of files are being reviewed.
• External identification is chaotic and unwieldy

Solution
Embed an identifier in configured item that identifies the version and optionally it’s state.
In some version control tools such as SCCS, this can be accomplished using expansion
keys. Developers place special character strings (keys) in their files when checking them
back in. The keys are expanded by the version control system when the file is extracted,
placing the version information where the key was. This doesn’t work for binary files,
however.

Resulting Context
Files that are extracted from the version repository contain configuration identifiers that
provide information to the developer. This information provides a guarantee that an
extracted version of a file corresponds to a version in the repository and is viable for
reviews, audits, etc. Hopefully developers are not malicious, but it must be noted that the
expanded information can be altered in text files. Identifiers embedded in object code for
later identification by tools like 'what' are more secure.

Known Uses
A project at AGCS uses expansion keys in files for self-identification purposes. The
developers have placed SCCS keywords in each file that, upon extraction from the
repository, expand to file name, version, promotion date/time, and characters that support
the Unix 'what' command. The 'what' command examines object and executable code for
expanded keyword information. This is used by the make-file link step to verify that the
correct objects are being put together.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

7

Related Patterns
This pattern is similar to Embedded BOM (not described in this paper), which describes
another method of placing information inside source code for use after compilation. You
add a character string of the form:

Static const char* vssid[]= ‘$Revision$

Then you can do a Unix 'strings' command on the object files to see what you actually
built. A bit overkill, but an easy way to get validation when your build process isn’t very
repeatable.

This pattern is also related to IDBase (not described in this paper) contributed by Paul
Sander (pauls@broadvision.com). This pattern employs another method to identify and
verify components in a built product with their sources. An ID base is a list of tuples
consisting of file paths, version identifiers, and checksums. As the last step of the build
process, a tool processes every "interesting" file to capture the tuple for the file and build
the ID base. A second tool used to verify a file's membership in a build by producing its
checksum and looking it up in the ID base. The ID base can be used as a BOM when
selecting sources and to assess the accuracy of a reproduced build. Paul's use of the ID
base is in post-release to support diagnosis of version mismatch problems at a customer
site. His company ships the second tool as part of their product and keeps the ID bases
internally.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

8

Reproducible Build

Context
You have successfully built the software system once in the past and as a result, created a
build process. Perhaps you've implemented the Bill of Materials pattern.

Problem
How do you know if the build process and/or bill of materials can faithfully reproduce
the software system?

Forces
• The build process may not capture all of the components (completeness).
• The build process may not identify the correct versions and locations of components

(correctness).

Solution
Test both the build process and bill of materials by producing a build from them and
checking for differences between the initial build and the process-generated build. The
simplest method would be looking at final file size of the executable(s). Commands like
'cmp' (Unix) can do a binary difference between the executables to show that something's
lacking in the build process. Another Unix tool is 'spiff', a tool that looks for embedded
information (e.g., time stamps). If the build process uses compilers that can do some
nifty optimizing parallel stuff, you may never be able to count on the exact same
sequential output ordering twice. In this case, running a regression test suite can prove
that the executables are equivalent.
Debug any differences found and reiterate until no differences are found. Named Stable
Bases [Cope95] recommends establishing a frequency of integrating and building
software that manages the stability of the base.

Resulting Context
After implementing this pattern, the developers will be confident that the software loads
are stable. Integrators will be confident that they can recreate software builds, especially
if they need to back up to a previous state of the base.

Known Uses
AGCS has a CM group that applies this pattern to validate that the product that is being
shipped to the customer. The AGCS CM team applies the build process that the
engineers use and verify that the product delivered to the CM team for release to the
customer can be produced by the build process.
One of the CM team leaders worked with a project group that didn't document the build
process until some time after the product was released. When the customer reported
problems with the product, the project group couldn't reproduce that version of the
product to reproduce the problem in their own labs, and thus couldn't provide a fix for the

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

9

customer. The customer had to wait for the next major release of the product instead of
receiving a repaired version of what they were using.

Related Patterns
Named Stable Bases and Bill of Materials can be used in association with this pattern.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

10

Daily Build and Smoke Test [IEEE1]

Context
Lots of changes are being made to the software daily and by many developers.

Problem
How do you keep the changes from getting out of hand and contain the potential for
errors in the build?

Forces
• Lot of effort to back out or fix problems that break the build.
• If there are many changes, the error(s) can be many layers under the first error

discovered.
• Trying to isolate the change(s) that broke the build is difficult.

Solution
Build the software product daily to see if it still builds and runs successfully or if it
smokes when it runs.

Resulting Context
The number of changes introduced into the build is more manageable in a daily build.
The risk of breaking the build is reduced and defect diagnosis is easier. You know that if
the product worked on one day and didn't the next, something added to the product in that
span of time caused the build and/or product to fail.
It also prevents integration problems from consuming the project. It is important that the
build is daily because it establishes a rhythm for the project. No one has to remember
what day the build takes place. Developers also know that if their changes didn't make it
into this build, they won't have to wait until some time later in the week.
Developer morale is improved. With daily builds, a bit more of the product works every
day, and that keeps morale high.

Known Uses
Microsoft uses this pattern for the development of Windows NT. They set a specific time
of day as a deadline for submittal of changes and builds would be scheduled around the
deadline [IEEE1].
AGCS load integrators use this pattern to build group-wide loads for system testing. They
build a load from developers' submissions on a daily basis. Developers can continue to
submit changes to the build, but their changes will not be included unless exceptions are
granted.

Related Patterns
This is an instantiation of Named Stable Bases where here the frequency is specifically
one day.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

11

 Shared Source Cache

Context
You have a version repository in which you can identify viable sets of file versions.
Developers are using private workspaces to do local edits or builds, but don’t want to
have the entire file set local to their workspace.

Problem
How do you support private workspaces without having the entire source code file set
local to the developer?

Forces
• You don’t have enough disk space on the developer’s local platform to contain the

entire source file set.
• There is a lot of overhead in managing a large private workspace; multiply this times

the number of developers shows a huge productivity impact
• The local workspace is used only for edits or builds occur on another platform.

Solution
Create a common workspace that contains shared immutable objects. A project leader
extracts viable versions and places them into the common workspace. This pattern serves
as the foundation to Derived Object Pool where you can improve link performance by
compiling the files in the common workspace.

Resulting Context
Developers’ local file sets are constrained to files in which they are interested, making
efficient use of their local disk space. Build scripts, development environment settings,
etc., are set up to look locally first, followed by the location of the common workspace,
creating local developer builds that are more consistent with each other.

Known Uses
An in-house CM tool at Honeywell CAS provided this feature. The tool provided the
means to identify and configure source file versions. The configured source file versions
were stored in a separate directory and could be referenced by users in their build
processes. One example was providing a source of included files.

Related Patterns
Shared Object Cache.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

12

Shared Object Cache

Context
Developers are performing local builds based on extracted files. Most of the file versions
that they are extracting to their local workspace are in common with all of the other
developers. Each developer separately compiles and links the same common file set.

Problem
How do you eliminate redundancy of effort in every developer compiling the same set of
file versions?

Forces
• You don’t have enough disk space on the developer’s local platform to contain the

object files produced by the entire source file set.
• There is a lot of overhead in managing a large private workspace; multiply this times

the number of developers shows a huge productivity impact.
• Compiling the entire source file set takes a lot of time; multiply this times the number

of developers shows a huge productivity impact.

Solution
Maintain a pool of derived (compiled) objects with associated information. This is done
more efficiently when Shared Version Cache is implemented first. Developers’ linkage
paths point to their own local pool first followed by the common pool.

Resulting Context
Improved performance in total build time. Common file set is kept and managed in
shared workspace, reducing the maintenance and build overhead for every developer.

Known Uses
A project at AGCS uses this pattern using a Unix technique called 'view-pathing.' The
project administrator defines a common shared directory for the project developers. The
administrator populates this directory with files from the version repository that meet
specific criteria: the files compile and link cleanly, have passed review, and have met
unit-testing requirements. Developers can set up a logical link to the common directory
so their personal make-files will search their local directories first, then the common
directory for source.
An in-house CM tool at Honeywell CAS provided this feature. The tool provided the
means to identify and configure source file versions. The configured source file versions
were compiled as they were inserted into the configuration, producing an associated
object file. Users could include the path to this pool of associated object files in their link
paths.

Related Patterns
Shared Version Cache provides the context for this pattern.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

13

Shared-Source Escalation

Context
You have similar products/projects underway. You recognize that there are components
of these projects that will be identical or have common components that have not
diverged. Having two or more sets of identical components is a maintenance headache.

Problem
How can you support and maintain a common set of components used by more than one
product/project?

Forces
• Portions of products/projects are similar.
• Product groups are providing a family of related products to provide flexible solutions

to customers.
• Components or sub-products are discrete.
• There is overhead to supporting re-use.
• Product groups are challenged to bring products to market faster.

Solution
Make internal projects out of common code reused by multiple other projects. This
requires 1) identifying the common components/products used by other projects, 2)
establishing an independent project for these common components, and 3) establishing an
internal release process of the common components to the individual projects.

Resulting Context
Shared components or products are maintained in one place rather than multiple places
improving development efforts. A CCB (change-control board) may need to be put in
place to coordinate and approve different groups' requirements for changes and
enhancements of the common components. Over time different projects may find that
some components need to be specialized. At that point they could take responsibility for
their variant of the common components.

Known Uses
Ralph Cabrera (cabrerar@agcs.com) contributes: One of AGCS’ product groups
supports two parallel product efforts where one project manages an internal “sub-
product” used by both projects. A file- sharing mechanism provided by an in-house CM
tool allows the managing project to identify and make public those files that are part of
the shared “sub-product”. The borrowing project can select and deploy versions of the
“sub-product” independent of the other project. Ownership is maintained by the
managing project.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

14

Related Patterns
None.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

15

Version-Controlled Environment

Context
Customers, regulatory organizations, or the law may require that older versions of
software systems be available for audit, debugging, patching, or enhancement. Only
known and controlled changes (such as patches) may be introduced into the software
system.

Problem
How do you faithfully and exactly reproduce builds of older versions of software
systems?

Forces
• The level of software criticality requires exact reproduction of older versions of

software.
• Certifying agencies like the FAA require exact reproduction of older versions of

software.
• Operating systems change
• Tools (e.g., compilers) change
• Development environments change
• Level of impact that the environment has on the software system dictates scope of

environment components.
• The version control system has sufficient storage capacity to contain versions of

environment components.
• The version control system can handle versioning environment components (typically

large binary files).

Solution
Identify the environment components that impact the software system and place these
components under version control. Associate versions of the environment components
with other components (e.g., source code) that contribute to a build, perhaps by using a
common label.

Resulting Context
Software systems can be faithfully and exactly reproduced, depending on how close the
re-created environment approximates the original. The combination of the bill of
materials, environment repository, and/or vaulted components reduces variation in the
reproduced build. Maintainers will find it easier to reproduce field-reported problems
and not worry about introducing new problems due to changes in the environment.
If the environment components cannot be version-controlled or there isn't sufficient
storage capacity to contain versions of these components, consider using the Archived
Environment pattern.

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

16

Known Uses
Ralph Cabrera (cabrerar@agcs.com) contributes the following : Honeywell
Commercial Avionics Systems (CAS) is required by the FAA to be able to reproduce
software systems that have been released twenty-five years ago. Airplanes can be in
service for any length of time; if problems are discovered in the version of software on an
airplane, or an airplane crashes and software is one of the possible causes, CAS must first
reproduce a build of the system to reproduce the problem or scenario.
Another reason for CAS to reproduce an exact build is mostly financial. Boeing may
have enhancement requests of the older software and not be able to upgrade hardware or
software. The enhanced system must not contain any changes other than the requested
enhancements.

Andy Glew (glew@cs.wisc.edu) contributes the following : Some environments take
advantage of Unix chroot ‘boxes’ to make it impossible to use other tools in your project
by accident. (Editor’s note: chroot defines what a user can see as the root path, aka ‘/’).
Outside of such a strictly controlled environment, on machines where there is more than
one compiler present, it is far too easy to forget about on tool’s PATH variable or
equivalent, and therefore end up with a build using tools that were otherwise not
expected.
Since chroot ‘boxes’ correspond to directory trees, it would be straightforward to place
all of the ‘box’ under version control (e.g., CVS), so that an update from the version
control tool (CVS update) could update the tools in the ‘box’ (or not), as desired.

Ken MacLeod (ken@bitsko.slc.ut.us) contributes the following : Implementing SCM
for the entire software environment on a host has been significantly easier over the past
few years through pervasive use of software packaging and auto-installation. Ken has
used Sun’s JumpStart auto-installation system to maintain hosts to specification. The
specification file is a post-install script that drives the installation of software and
configuration files after the base OS has been installed. Any software that can be
packaged can be added to the base-OS package installation and included in the base bill
of materials. Configuration files are SCM’d through normal SCM tools. Short and mid-
term updates are usually performed as package replacements and overlaying new
configuration files. An audit facility for comparing a running system to ‘what will be
built next time’ is composed primarily of doing a package cross-check, a known list of
changed configuration files from SCM, and an audit of the remaining files that should not
have changed since last install. We also wrote offline and online availability of
regression tests for each application system to be used as part of installation testing,
auditing, and disaster recovery.

Related Patterns
Archived Environment .

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

17

Archived Environment

Context
Customers, regulatory organizations, or the law may require that older versions of
software systems be available for audit, debugging, patching, or enhancement. Only
known and controlled changes (such as patches) may be introduced into the software
system. Version-Controlled Environment doesn't cover everything that contributed to the
software system.

Problem
What do you do with environment components that cannot be put under version control?

Forces
• The level of software criticality requires exact reproduction of older versions of

software.
• Certifying agencies like the FAA require exact reproduction of older versions of

software.
• Operating systems change
• Tools (e.g., compilers) change
• Development environments change
• Hardware changes.
• Level of impact that the environment has on the software system dictates scope of

environment components
• Limited amount of space prohibits version control of the environment

Solution
Put the environment components that cannot be version-controlled (like operating system
CDs or tapes) into vaults with labels that associate them with releases of software.
Identify these archived components in the bill of materials.

Resulting Context
Software systems can be faithfully and exactly reproduced, depending on how close the
re-created environment approximates the original. The combination of the bill of
materials, environment repository, and/or vaulted components reduces variation in the
reproduced build. Maintainers will find it easier to reproduce field-reported problems
and not worry about introducing new problems due to changes in the environment.

Known Uses
Ralph Cabrera (cabrerar@agcs.com) contributes the following : Honeywell
Commercial Avionics Systems (CAS) is required by the FAA to be able to reproduce
software systems that have been released twenty-five years ago. Honeywell places
computing environment operating systems onto tapes that are sent to an off-site vault.
The tapes are labeled to associate them with product releases. Honeywell also retains

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

18

necessary hardware platforms in storage until permitted to obsolete them as software
products are retired.

Related Patterns

Version-Controlled Environment

Ralph Cabrera Software Reconstruction: Patterns for Reproducing Software Builds

19

Acknowledgements
The authors would like to give special thanks to the following people for their significant
contributions:
• Andy Glew
• Keith McLeod
• Melvyn Jacobs
• Linda Rising
• David Kane
• Paul Sander

References
[Appleton97] Brad Appleton; Patterns and Software: Essential Concepts and

Terminology; Object Magazine Online http://www.sigs.com/omo/,
May 1997, Vol. 3 No. 5;
http://www.enteract.com/~bradapp/docs/patterns-intro.html

[Beedle97] Michael A. Beedle; "cOOherentBPR - A pattern language to build
agile organizations"; in PLoP/Allerton Park 1997 Proceedings;
Washington University Technical Report #wucs-97-34

[OrgPats] Organizational Patterns Wiki Web; http://www.bell-labs.com/cgi-
user/OrgPatterns/OrgPatterns

[Berczuk95] Stephen P. Berczuk; Patterns for Separating Assembly and
Processing; in Pattern Languages of Program Design, James O.
Coplien, Douglas C. Schmidt (Ed.), Addison-Wesley, 1995, pp. 521-
528

[Berczuk96] Stephen P. Berczuk; Organizational Multiplexing: Patterns for
Processing Satellite Telemetry with Distributed Teams; in Pattern
Languages of Program Design 2 J. Vlissides, J. Coplien and N.
Kerth, editors; Addison-Wesley, 1996, pp. 193-206

[POSA] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerald,
Michael Stal; Pattern-Oriented Software Architecture: A System
Of Patterns ; John Wiley & Sons, 1996

[Continuus] Continuus; Change Management for Software Development, Chapter
6: Build Management, Copyright 1998. (http://www.continuus.com)

[Cope95] James O. Coplien; A Generative Development-Process Pattern
Language; in Pattern Languages of Program Design J. Coplien and
D. Schmidt, editors; Addison-Wesley, 195, pp. 224-225

[IEEE1] Steve McConnell; Best Practices, IEEE Software, Vol. 13, No. 4, July
1996.

[Appleton et al] Brad Appleton, Stephen P. Berczuk, Ralph Cabrera, Robert Orenstein;
Streamed Lines: Branching Patterns for Parallel Development; PloP
1998; http://www.enteract.com/~bradapp/acme/branching/.

