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ABSTRACT
Certificate Transparency (CT) is a project that mandates public
logging of TLS certificates issued by certificate authorities. While a
CT log is designed to be trustless, it relies on the assumption that
every client sees and cryptographically verifies the same log. The
solution to this problem is a gossip mechanism that ensures that
clients share the same view of the logs. Despite CT being added to
Google Chrome, no gossip mechanism is pending wide deployment.
We suggest an aggregation-based gossip mechanism that passively
observes cryptographic material that CT logs emit in plaintext,
aggregating at packet processors and periodically verifying log
consistency off-path. Based on 20 days of RIPE Atlas measurements
that represents clients from 3500 autonomous systems and 40% of
the IPv4 space, our proposal can be deployed incrementally for a
realistic threat model with significant protection against undetected
log misbehavior. We also discuss how to instantiate aggregation-
based gossip on a variety of packet processors, and show that our
P4 and XDP proof-of-concepts implementations run at line-speed.

1 INTRODUCTION
Usage of Transport Layer Security (TLS) on the web is gradually
transitioning towards a security-by-default model. For example,
30% of Google’s egress traffic uses an always encrypted protocol
named QUIC [32], more and more websites adopt HTTP over TLS
(HTTPS) [23], and Google Chrome is about to change its security in-
dicators to better reflect that the status quo is no longer based on an
opt-in model1. The ecosystem surrounding transport security has
also undergone a paradigm shift. This includes the standardization
of TLS 1.32, as well as automated, free-of-charge, and transparent
certificate issuance with fewer errors [31, 37]. Given that the secu-
rity of TLS is ultimately underpinned by certificates—identity to
key bindings that trusted Certificate Authorities (CAs) issue—the
latter is of particular importance. Automated and free certificate
issuance is provided by today’s largest and non-profit CA Let’s
Encrypt. Greater transparency is due to Certificate Transparency
(CT) logging [34, 35], which is being deployed incrementally in
Google Chrome: as of May 2018 new certificates must be publicly
logged to be trusted3, augmenting the weakest-link model of the
CA ecosystem such that there is little or no blind trust left.

1https://web.archive.org/web/20180519224524/https://blog.chromium.org/2018/05/
evolving-chromes-security-indicators.html (May 2018)
2https://web.archive.org/web/20180519224403/https://www.ietf .org/mail-archive/
web/ietf-announce/current/msg17592.html (March 2018)
3 https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/
iMFmpMEkAQAJ (February 2018), accessed 2018-05-20.

While the new requirement of including certificates into CT logs
is a significant improvement, it is not without shortcomings. The
design of CT is such that a log operator need not to be yet another
trusted third-party. However, this requires mechanisms that either
deter or prevent a log from serving different conflicting versions of
its structure and content to the parties interacting with the log; so
called split views [12, 41]. Proposals for these mechanisms often take
the following retroactive form: log clients gossip signed material
that the logs generate, thereby making it possible to challenge any
log to prove that it is serving consistent views by leveraging the
cryptographic foundation of CT. Gossip mechanisms are complex
for a number of reasons that range from client privacy to varying
threat models and deployment challenges [12, 18, 41]. At the time
of writing and to the best of our knowledge, no gossip mechanism
is widely used4. As such, clients must trust that CT logs refrain
from presenting split views, and the community have yet to settle
for one or more gossip mechanisms that can be deployed at scale.

We propose a gossip mechanism that assists in split view de-
tection retroactively based around the idea of network packet
processors–such as switches, routers, middleboxes, and operating
systems—that aggregate signed log material in plaintext which is
then used to challenge the logs to prove consistency off-path. This
proposal is controversial given current trends to encrypt transport
protocols, which is otherwise an approach that combats inspection
of network traffic and protocol ossification [20, 30]. Nevertheless,
the idea is similar to the debate of keeping parts of the multi-path
QUIC header accessible to middleboxes for the sake of traffic shap-
ing [13], whereas we argue that keeping gossip related material in
plaintext comes with few downsides: encryption is often motivated
by security considerations, but in our case it has the opposite effect
and reduces the security of CT. Our gossip mechanism has no major
negative impact on privacy, makes split views significantly more
risky in a realistic threat model, is easy to implement, and would
offer significant protection for a large fraction of the Internet with
relatively small deployment. The three main limitations are (i) no
protection against isolated clients which is beyond the scope of any
retroactive gossip mechanism [49], (ii) reliance on clients that fetch
easy-to-process cryptographic material from the logs in plaintext,
and (iii) possible concerns surrounding protocol ossification [30].

4Google provides a gossip package that supports ‘minimal gossip’ and the mechanisms
of Nordberg et al. [41]: https://github.com/google/certificate-transparency-go/tree/
master/gossip (May 2018). According to Gasser et al. up to 16,800 domains might
support server-side gossip, but yet it appears that there is “next to no deployment in
the wild” [24]. At least two monitors (Graham Edgecombe and SSLMate) support and
receive gossip from the CT honey bee project [3], which exists as a stand-alone client
daemon, a Google Chrome plugin, and an Android application named ‘transparensbee’.
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Notably we build upon Dahlberg’s Master’s thesis which ex-
plored the idea of aggregation, different plaintext sources, and the
use of P4 for instantiation [43]. Specifically, our contributions are:

• Design and associated security considerations for a gossip
mechanism based on passive aggregation of cryptographic
material generated by transparency logs like CT and actively
challenging logs off-path to prove consistency (Section 3).

• Generic implementations of passive aggregation in P4 [7] and
XDP [25] for CT-over-DNS traffic, supporting programmable
packet processors that range from Linux-based operating
systems to network interface cards and routers (Section 4).

• A tailored P4 implementation for an Xilinx NetFPGA SUME
board, which is used in a performance evaluation showing
that aggregation can take place inline at 10 Gbps without
any clear throughput-related distinguisher (Section 4).

• A simulation based on RIPE Atlas network measurements
which uses 4606 world-wide probes over 20 days to evaluate
the impact of deploying our gossip mechanism at Internet
Autonomous Systems (ASes) and Internet Exchange Points
(IXPs). Our evaluation shows that incremental roll-out of
aggregation-based gossip at well-connected ASes and/or
IXPs would protect a significant portion of all Internet clients
from otherwise undetected split view attacks (Section 5).

Besides the sections referenced above, the paper is structured
as follows. Section 2 provides necessary background on CT and
programmable data planes. Related work is presented in Section 6,
followed by discussion in Section 7 and conclusions in Section 8.

2 BACKGROUND
Throughout this paper the reader needs to be familiar with CT and
the principles of programmable packet processors. Therefore, we
start by motivating and describing each building block separately.

2.1 Certificate Transparency
The CA ecosystem is historically known for its weakest-link secu-
rity: if one trusted third-party gets the certificate issuance process
wrong, then a fraudulent identity-to-key binding can be issued
for any domain [19]. Although multiple cases of certificate mis-
issuance have been found in the past5, it could be the tip of the
iceberg because it is hard to determine what has been issued for
whom. This dilemma is the motivation of CT [34, 35]. The idea
is simple: TLS clients require that presented certificates must be
disclosed in a public append-only tamper-evident log [14, 21], such
that anyone can monitor the set of issued certificates. Notably the
goal of CT is not to prevent certificate mis-issuance, but to detect it.

2.1.1 Building Blocks. Due to the underlying structure of a CT
log, it is a cryptographically verifiable append-only tamper-evident
data structure. At any given time, a signed snapshot can be gen-
erated that represents the structure and the content of the log. In
CT jargon, this is called a Signed Tree Head (STH). It is possible
to prove certificate inclusion by revealing a logarithmic number of
hashes which are used to reconstruct the tree head of an STH. Upon

5https://web.archive.org/web/20180527220047/https://www.enisa.europa.eu/
publications/info-notes/certificate-authorities-the-weak-link-of-internet-security
(September 2016)

match, this proves membership given an existentially unforgeable
signature scheme and a collision resistant hash function [18, 40]. It
is also possible to prove efficiently that two STHs are consistent,
i.e., the log is append-only without tampering. This means that
a client can verify whether the presented certificates are part of
the log without fully downloading it, and whatever was in the log
yesterday must still be there today. Unlike the CA ecosystem, such
a setup requires no trusted party since correctness can be verified.

While the cryptographic foundation of CT is well-understood, it
is not without deployment challenges. For example, there may be
a halt in the certificate issuance process if a CA must wait for log
inclusion. Therefore, a log can issue a promise to include: within
some Maximum Merge Delay (MMD), the corresponding certificate
must be appended to the log. In CT jargon this is called a Signed
Certificate Timestamp (SCT), and it introduces an additional log
component that must be audited. Today’s deployment of CT evolves
around a policy where Chrome clients check that certificates are
accompanied by at least two SCTs6. Apple announced that a similar
policy will be used7, and perhaps this is also the case for Mozilla
Firefox8. The status quo is thus to trust the logs, but as CT is being
rolled out incrementally it would be a natural next step to verify
that this trust is not misplaced by interacting with the logs [48].

2.1.2 Privacy. Suppose that a TLS client does challenge a log
to prove certificate inclusion. In the same way that a revocation
check leaks a client’s browsing history to the CA, this would leak
a client’s browsing history to the log. Now suppose that a proof
and associated STH are instead stapled by the TLS server: a similar
dilemma arises if the STH is rarely served by other servers and
if the client verifies that it is consistent with a current view. In
other words, the process of auditing a CT log can result in privacy
concerns. Two promising approaches that deal with these issues
include (i) proxying all log interactions via a third-party that already
knows a client’s browsing history, and (ii) adding STH frequency
restrictions which ensure that a d-day old STH is never rare. The
former exists in the form of CT-over-DNS [33] (further described
in Section 4.1) and the latter is discussed within IETF [34, 35, 41].
Another approach is to use private information retrievals [36].

2.1.3 Gossip. Despite the ability to cryptographically verify that
a log includes certificates in append-only order, it does not mean
much unless everybody observes the same log. A log that presents
two different versions of itself is said to perform a partitioning attack,
and the result is a split view. To see why this is a problem, suppose
that a log serves a split view to a TLS client and a monitor. The
client sees a consistent version of the log that includes a fraudulent
certificate. Similarly, the monitor sees a consistent (but different)
version of the log that excludes the fraudulent certificate. The client
cannot distinguish between a benign and a fraudulent certificate,
and the monitor does not see it in the first place. As such, the
fraudulent certificate goes unnoticed, and CT fails to achieve its
goal of detecting certificate mis-issuance because the log is cheating.

6https://github.com/chromium/ct-policy (May 2018)
7https://web.archive.org/web/20180605133051/https://support.apple.com/en-us/
HT205280 (June 2018)
8https://docs.google.com/document/d/1rnqYYwscAx8WhS-
MCdTiNzYQus9e37HuVyafQvEeNro/edit (Draft 0.1.0), accessed 2018-06-12
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The theoretic assumption that CT relies on is a perfect gossip
mechanism: as soon as a log makes a statement, it is immediately
visible to public scrutiny. For example, in the example above the
monitor would first observe an STH from the client’s split view
and then challenge the log to prove consistency (which it cannot).
While CT gossip is necessary to untrust the log and avoid creating
a new form of ‘trusted CA’, it is challenging in practise due to the
complexity of the setting which involves privacy concerns, legacy
yet vital Internet infrastructure, and the CA ecosystem to name a
few aspects [12, 41]. It should also be noted that the term gossip is
not strict in the traditional9 sense throughout the paper—we view
CT gossip as any mechanism that prevents or deters a log from
presenting split-views. The discussion of our work in relation to
earlier approaches towards CT gossip is deferred until Section 6.

2.2 Data Plane Programmability
Equipment such as switches, routers, and Network Interface Cards
(NICs) are typically integrated tightly using customized hardware
and Application-Specific Integrated Circuits (ASICs). This inflex-
ible design limits the potential for innovation and leads to long
product upgrade cycles, where it takes years to introduce new pro-
cessing capabilities and support for different protocols and header
fields (mostly following lengthy standardization cycles). The recent
shift towards flexible match+action packet-processing pipelines—
including RMT [8], Intel Flexpipe [44], Cavium XPA10, and Barefoot
Tofino11—have the potential to change the way in which packet
processing hardware is implemented: it enables programmability
using high-level languages such as P4 (see below), while at the same
time maintaining performance comparable to fixed-function chips.

2.2.1 P4. The main goal of P4 is to simplify the programming of
protocol-independent packet processors by providing an abstract
programming model for the network data plane [7]. In this setting
the functionality of a packet processing device is specified without
assuming any hardwired protocols and headers. Consequently, a
P4 program must parse headers and connect the values of those
protocol fields to the actions that should be executed based on a
pipeline of reconfigurable match+action tables. Additionally, per
packet metadata fields can be used for the processing and state
management, augmented by customizable registers, meters, and
counters. The functionality of the core language is quite limited and
traditional building blocks such as for-loops, recursion, and floating
point operations are undefined. Some of these limitations can be
removed, but at the cost of platform dependencies that connect P4
with external functions which may be more complex.

Once a P4 program is specified, a front-end compiler gener-
ates a high-level intermediate representation that a back-end com-
piler uses to create a target-dependent program representation.
Compilers are already available for several platforms, including
the software-based simple switch architecture12 (also called the

9The traditional gossip problem involves n entities, each of which propose a unique
message that must be propagated to every other entity in the group [6, 27].
10https://web.archive.org/web/20170707175037/https://cavium.com/newsevents-
cavium-and-xpliant-introduce-a-fully-programmable-switch-silicon-family.html
(n.d.)
11https://web.archive.org/web/20180105002028/https://barefootnetworks.com/
products/brief-tofino/ (n.d.)
12https://github.com/p4lang/p4c-bm (April 2018)

behavioral model), SDNet for Xilinx NetFPGA boards [10], and
Netronome’s smart NICs which are capable of running external
functions in sandboxed C-environments [45]. There is also support
for compiling basic P4 programs into eBPF byte code13.

2.2.2 XDP. The Berkeley Packet Filter (BPF) is a Linux-based
packet filtering mechanism [38]. Verified bytecode is injected from
user space, and executed for each received packet in kernel space by
a just-in-time compiler. Extended BPF (eBPF) enhances the original
concept, enabling faster runtime and many new features14. For
example, an eBPF program can be attached to the Linux traffic
control tool tc, and additional hooks were defined for a faster
eXpress Data Path (XDP) [25]. In contrast to the Intel Data Plane
Development Kit (DPDK) which runs in user space and completely
controls a given network interface supporting a DPDK driver15,
XDP cooperates with the Linux stack to achieve fast, programmable,
and reconfigurable packet processing.

3 AGGREGATION-BASED GOSSIP
An overview of aggregation-based gossip is shown in Figure 1. The
setting (of which there will be multiple instances) consists of a
log that sends plaintext STHs to a client over a network, and as
part of the network an inline packet processor passively aggregates
observed STHs to an off-path challenger that challenges the log
to prove consistency. A log cannot present split views to different
clients that share an aggregating vantage point because it would
trivially be detected by that vantage point’s challenger. A log also
cannot present split views to different challengers because they
are off-path in the sense that they are indistinguishable from one
another (e.g., using an anonymity network). This means that every
client that is covered by an aggregator must be on the same view,
i.e., otherwise a challenger detects an inconsistency and tells the
world about it. Further, a client that is not covered by an aggregator
can receive indirect protection in the form of herd immunity as dis-
cussed in Section 7.4. After introducing our threat model and main
security notion, we describe the concept of the two components in
greater detail: in-line STH aggregation and off-path challenging.

Client Log

aggregate

Challenger
challenge

Packet Processor

Figure 1: Our setting involves a Log that sends STHs to a
Client in plaintext. These STHs are processed by a Packet
Processor component that filters the traffic for STHs, ag-
gregating to a Challenger component. The challenger chal-
lenges the log to prove consistency with regards to the ag-
gregated STHs off-path, e.g., using an anonymity network.

13https://github.com/iovisor/bcc/tree/master/src/cc/frontends/p4 (May 2018)
14https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/
Documentation/bpf/index.rst (May 2017)
15https://web.archive.org/web/20180520162550/https://dpdk.org/ (n.d.)
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3.1 Threat Model and Security Notion
The overarching threat is undetectable domain impersonation (ex-
post) by an attacker that is capable of compromising at least one
CA and a sufficient number of CT logs to convince a TLS client
into accepting a forged certificate with its associated SCTs and
STHs. We assume that any illegitimately issued certificate would be
detected by the legitimate domain owner or a proxy that monitors
the logs. This means that an attackermust either provide a split view
towards the victim or the owner/proxy. We also assume that TLS
clients will query CT logs for certificate inclusion based on STHs
that it acquires from the logs via plaintext mechanisms that packet
processors can observe, and that there will be some other entities
than challengers who process STHs via anonymity networks. We do
not consider that a CA compromise alone may be detected, instead
focusing solely on the split-view problem for CT logs.

3.1.1 Limitations. Our gossip mechanism is limited to STHs
that packet processors can observe. As such, a client isolated by an
attacker is not protected. We limit ourselves to attackers that act
over a network some distance (in the sense of network path length)
from a client in plaintext so that aggregation can take place. Our
limitations and assumptions are further discussed in Section 6.

3.1.2 Attackers. Exceptionally powerful attackers can isolate
clients, but clients are not necessarily easy to isolate for a significant
number of relevant attackers. Isolation may require physical con-
trol over a device16, clients may be using an anonymity network
like Tor where path selection is inherently unpredictable [17], or
an attacker simply cannot control sufficiently large parts of the
network infrastructure to ensure that no aggregation takes place.
This may in particular be the case if we consider a nation state actor
attacking another nation state actor, the prevalence of edge security
middleboxes, and that home routers or even closer packet proces-
sors like NICs could support aggregation. Any attacker that cannot
account for these considerations are within our threat model.

3.1.3 Security Notion. An adaptive attacker may attempt to
actively probe networks to discover aggregating packet processors
with the goal of circumventing them to launch an undetected split
view. This leads us to the key security notion for our mechanism:
aggregation indistinguishability. An attacker should not be able to
determine if a packet processor is aggregating STHs or not. The
importance of aggregation indistinguishability motivates the design
of our gossip mechanism into two distinct components: aggregation
that takes place inline at packet processors and periodic off-path
verification (log challenging) to verify whether STHs are consistent.

3.2 Packet Processor Aggregation
The packet processor component runs in-line, aggregating STHs
by filtering and capturing relevant traffic for an off-path challenger.
To setup the packet processor parameters are assigned based on
implementation and STH source to specify how packets should be
filtered to capture traffic containing STHs. A security parameter
specifies the probability that the relevant traffic will be aggregated.

16For example as in the FBI-Apple San Bernardino case: https://web.archive.org/
web/20180520135200/https://www.eff .org/cases/apple-challenges-fbi-all-writs-act-
order (February 2016)

For each packet processor we need to take IP fragmentation
and load into consideration. Without accounting for (intentional)
IP fragmentation, an attacker can trivially fragment an STH to
circumvent aggregation. The impact of multi-path fragmentation is
discussed in Section 7.1. Depending on implementation, large traffic
load may cause filtering and aggregation performance degradation
resulting in a clear aggregation distinguisher that distant attackers
can probe for. This is addressed by probabilistic filtering, potentially
adjusting the probability based on load or simply aggregating with
an acceptable probability for worst-case load. We emphasize that
the security implications that relate to handling of IP fragmentation
and aggregation indistinguishability are dependent on the intended
packet processor as well as the aggregated STH source. Section 4
implements our design for two hardware targets and a given source.

3.3 Off-Path Log Challenging
A packet processor must be configured so that gossip-related traffic
is aggregated to a challenger component that is not run in-line. Other
than fetching STHs on its own off-path, the challenger reassembles
IP fragments to track every STH that was probabilistically observed
by its aggregator(s). The resulting set of STHs is used to challenge
the logs to prove consistency periodically. It is paramount that these
challenges cannot be linked to the either of the aggregating packet
processor or the challenging challenger. This is to preserve aggrega-
tion indistinguishability, but also to achieve implicit gossip amongst
different challenging components: it is hard to maintain a targeted
split-view towards an unknown location, which is the case if the
challenger fetches STHs and resolves proofs via an off-path [26].
This approach is similar to that of DoubleCheck by Alicherry and
Keromytis [1], which uses Tor to detect man-in-the-middle attacks.

We say that a challenger is off-path if a log cannot link it to its
aggregating packet processor or any challenger (including itself).
For example, an anonymity network like Tor [17] could be used
to this end, combined with delayed challenges to prevent timing
correlations (hence not running in-line). The threat of probing with
unique STHs to find aggregating paths is discussed in Section 7.1.

3.4 Multiple Aggregator-Challenger Instances
No actor controls all packet processors. As such, there will be many
independent challengers that are reported to by its own packet
processor(s). Occasionally aggregator-challenger instances may
be implemented in the same box, e.g., if end-systems or security
middleboxes are approached. In other cases an actor may have
aggregators that report back to a logically centralized challenger,
e.g., ASes, IXPs and ISPs that operate SDN-like infrastructures [22].

4 IMPLEMENTATIONS
While there are many types of packet processor that could support
aggregation in different ways (further discussed in Section 7.2),
our implementations specifically explore two approaches towards
data plane programmability that together support a wide range of
targets: P4 and XDP. First the plaintext source that our proof-of-
concept implementations aggregate is introduced17. Next imple-
mentation details are outlined, and target-independent aggregation
considerations elaborated upon for the selected plaintext source.
17All relevant code is available on GitHub: https://github.com/rgdd/ctga (June 2018)
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Ethernet

IPv4
type=0x0800

IPv6
type=0x86DD

UDP

DNS preamble

Query name

Query type

qd=an=1

sport=53

proto=0x17 proto=0x17

Figure 2: Parser graph

Finally, performance results are presented for two hardware targets.
Notice that we do not implement the challenger: verification is
relatively easy given an off-path and the aggregated STHs.

4.1 Plaintext Source
The fundamental assumption that aggregation-based gossip relies
on is a plaintext source that packet processors can observe. The
most applicable mechanism today is CT-over-DNS, which is hosted
by Google for all Chrome-included logs. According to the draft by
Laurie [33], a DNS STH response is an IN TXT resource record
where the query domain is sth.<log>.ct.googleapis.com. We
further restrict the format such that a response must be transported
by UDP and contain (i) a single query, (ii) a single response, and (iii)
no more than a threshold of bytes. These requirements facilitate
data plane packet processing, and must be enforced by client soft-
ware if gossip-based aggregation is adopted. Besides CT-over-DNS
there are two other plaintext sources available: TLS ≤1.2 and OCSP.
Dahlberg [43] discussed this in detail: TLS is inapplicable long-term
because TLS 1.3 encrypts SCTs/STHs, and OCSP requires ASCII
parsing which is hard at high rates. We would also add that it is
challenging to use TCP because it is a stream-oriented protocol.

4.2 P4
Our proof-of-concept implementation targets the P416 v1model
architecture and the behavioral model (Section 2.2.1), instantiat-
ing STH aggregation based on two fundamental building blocks:
variable length headers and a hash function (e.g., based on CRC32).

4.2.1 Packet parsing. Figure 2 gives an overview of the headers
that must be declared and parsed to aggregate DNS STHs. It is
straight-forward to extract headers down to DNS, after which the
parsing must continue in multiple stages: extract a fixed-width
preamble that contains the number of questions (qd) and answers
(an), loop to extract the query domain name, and finally extract the
fixed remainder of the query (class and type). It is not possible to
parse an arbitrary number of questions and answers in P4 because
loops must be bound by a constant. This motivates the restricted
CT-over-DNS format in Section 4.1. A variable-length domain name
can only be parsed because it is a finite number of bytes and labels.

4.2.2 Packet processing. The parser outputs a parsed packet
representation of valid headers that are processed by a number of

match+action tables. Our ingress pipeline consists of a routing table
that is always applied, and a log table that is only applied for DNS
IN TXT packets. The table of known logs exact-match on the hash
of a packet’s query domain name, and upon hit it is marked for
control-plane copying that the target’s queue management system
handles. While there are no special requirements on the hash func-
tion, bad spread increases false positives (i.e., copying overhead)
under normal behaviour because TXT domain names may collide.
IP fragments that are less than a threshold are also copy-marked. As
an example of probabilistic filtering, our proof-of-concept supports
every nth packet copying; n is a register-stored security parameter.

4.3 XDP
The notion of STH aggregation is also expressible using eBPF. An
eBPF program can be loaded into the Linux kernel’s fast forwarding
path, including before and after socket buffer allocation. Our proof-
of-concept implementation targets the before use-case with XDP.

4.3.1 Packet parsing. Given that the same packet type should be
parsed regardless of the implementation, Figure 2 is also applicable
for XDP. Although it is possible to declare and parse custom head-
ers, much of what we need is already available in kernel headers
(e.g., IPv4 and UDP). The trickiest part of the parsing procedure is
variable length fields, and the limitations are similar to P4: a loop
must be unrolled at compile time, and thus be bound by a constant.

4.3.2 Packet processing. Because functionality is implemented
as an imperative C-like program, XDP alternates between packet
parsing and header processing. A packet that does not fit the parser
graph can thus be routed towards its destination immediately. On
a host this would be the normal networking stack, and on a router
an outgoing interface. If a packet is determined to be a DNS IN
TXT resource record with a single question-answer section, the
parsed domain name is looked up in a hash map. Upon match, the
packet is control-plane copied by inserting it into a ring buffer that
a user space application can poll18. IP fragments that are less than
a threshold are also copied, and nth packet filtering is supported.

4.4 Other Considerations
Regardless of the approach towards implementing STH aggregation,
it is vital to consider indistinguishability and handling of IP packets.
We elaborate on each challenge and its implications below, relating
the discussion to CT-over-DNS as the plaintext source.

4.4.1 Indistinguishability. The overarching packet processing
is designed not to introduce any trivial distinguishers, such as
dropping tiny fragments proactively. An implementation caveat,
though, is that parser exceptions may be approached differently
by programmable targets and developers. To provide aggregation
indistinguishability, a packet that is malformed must neither be
dropped nor altered (necessary but not sufficient). Given that a
typical program often operates on lower-layer headers only, this is
of particular importance when parsing UDP and DNS headers.

4.4.2 IP fragments and options. For data minimization, an IP
fragment is only aggregated if it is less than a threshold. Therefore,
a log client must reject STH packets that are too large. At the time
18https://github.com/cilium/cilium/blob/master/Documentation/bpf .rst (April 2018)
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of writing a typical DNS STH is encoded as ≈170 bytes19, and a
400 byte threshold would presumably be large enough to account
for IP options, large domain names, and future STH extensions.
However, the exact threshold must be specified unambiguously
before deployment for clients, and should be treated as a security
parameter by IPv6 packet processors due to variable length options.
Notice that the privacy impact of aggregating small fragments
have (presumably) little or no impact on legitimate traffic20 [47].
After all, the de-facto minimumMTU has been at least 576 bytes for
decades [9, 15]. This means that fragmentation is an anomaly rather
than expected behaviour, and around 24 unique STHs per day and
log should be found given sound STH frequencies for privacy [41].

4.5 Performance
To evaluate performance and aggregation (in)distinguishability
of our proof-of-concept implementations, a test-bed consisting of
a traffic generator, a traffic receiver, and an aggregating target
in between was set up. We used the open source network tester
OSNT [2] for traffic generation and reception, replaying several
different packet captures on a 10 Gb Xilinx NetFPGA SUME board21.
The first target is also a 10 Gb Xilinx NetFPGA SUME board, but it
runs an adapted version of our P4 reference implementation22. The
second target is a net-next kernel v4.17.0-rc623 Linux machine that
runs XDP on one core with a 10 Gb SFP+ X520 82599ES Intel card,
a 3.6 GHz Intel Core i7-4790 CPU, and 16 GB of RAM at 1600 MHz
(Hynix/Hyundai). We poll the ring buffer from a different core.

4.5.1 Experiments. Our experiments on a given target proceed
as follows. First, a minimal program that routes the traffic from
the generator to the receiver is loaded. This serves as a reference
point, indicating how much throughput the target or the traffic
generator and receiver can handle. Second, the minimal program
is extended so that it aggregates small fragments and DNS STHs
from 16 fictional logs whose domain names are assumed to be five
labels of 1+16 bytes each. We chose excessively large domain names
because it takes more time to parse and match, and normal sized
DNS STHs. This resulted in 411 byte packets, although fragments
are only 68 bytes. Our evaluated metric is throughput as the control
plane copying match rate increases from 0–100% in intervals of 10,
and we examine fragments and STHs separately every second for
two minutes per interval. The background traffic of the respective
experiments is non-fragments of the same size: 68 byte UDP packets
for fragmentation, and otherwise 411 bytes DNS STHs that are
unrecognized (miss in the table of known logs). In other words, the
background traffic consumes as much resources as possible, but
without being control-plane copied or changing the packet size.

4.5.2 Results. Figure 3a shows throughput as a function of
match rate for the P4-enabled NetFPGA. While we were unable
to observe any performance distinguisher between routing and

19We queried all Chrome-included logs via DNS, inspecting the returned responses.
20https://web.archive.org/web/20180612113649/https://tools.cisco.com/security/
center/viewIpsSignature.x?signatureId=1206& (January 2006)
21https://web.archive.org/web/20170702013300/http://store.digilentinc.com/
netfpga-sume-virtex-7-fpga-development-board/ (n.d.)
22Functionally is the same, expect that the P4 SUME architecture have yet to support
variable length headers. To overcome this deficiency, we assumed fixed-length domain
names whose labels are extracted one at a time in five distinct parser states.
23https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/ (May 2018)

aggregation of whole STHs, there is a minor difference for small
fragments (7.5 Kbps). If a packet processor is physically isolated as
in our benchmark, this is a non-negligible program distinguisher.
This is not an issue for two reasons. First, within our threat model a
packet processor cannot be isolated because the intended attacker
is distant. Given the influence from noise traffic that competes
with bandwidth, queueing, and other resources of the traversed
packet processors, it would likely be non-trivial to pick up on in
practise. Second, a program distinguisher is not an issue unless it
uniquely identifies STH aggregation: anything could be running.
This would not be the case if a performance metric changed as a
result of adjusting the STH rate while aggregating.
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Figure 3: Throughput as a function of match rate. In our
threat model, aggregation indistinguishability is provided
by P4-NetFPGA. For XDP it depends on how it is deployed.

Figure 3b shows throughput as a function of match rate for the
single core XDP target. As long as the STH rate is less than 10%,
we were unable to observe any trivial aggregation distinguisher for
whole STHs. If the security parameter n is set such that every other
packet is copied instead, then aggregation indistinguishability is
also provided for 20% STH rate. This suggests that control plane
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copying is the most expensive operation for whole STHs, and by
fine-tuningn a probabilistic filteringmechanism can combat evident
performance distinguishers. However, adjusting n is insufficient for
small fragments: on our system one-core line rate of small packets
is near 6 Gbps, but despite nothing being copied throughput drops
down to 3.7 Gbps. This program distinguisher might be somewhat
unique, but it is not necessarily a problem. For example, 10 Gbps
line-rate could be achieved by using three cores (as opposed to one).
Moreover, line rate on an end-system is typically less than 1 Gbps.

Figure 3 thus shows that P4 and XDP can provide aggregation
indistinguishability within our threat model (either with or without
extra configuration depending on the target). Our proposal supports
stress-testing with up to 10 Gbps of STH-only traffic, although
we were unable to test aggregation of small fragments at rates
larger than 7.8 Gbps. This is a deficiency that stems from traffic
generation and reception. It should be noted that these performance
numbers are mainly interesting for aggregation indistinguishability:
it would be abnormal network behaviour to see, e.g., 10% of the
traffic being DNS STHs or fragments, and for the expected case of
non-fragmented STHs and lower rates aggregation is basically for
free. Preliminarily, we also explored if latency is a distinguisher for
P4-NetFPGA (see Appendix A). It appears that STH intervals are
indistinguishable, but the presence of a program is not (∆ ≤ 5 µs).

5 ESTIMATED IMPACT OF DEPLOYMENT
We conducted traceroute measurements on the RIPE Atlas platform
to evaluate the effectiveness of aggregation-based gossip. Ultimately
this is used to quantify the direct protection against split-views for
40% of the IPv4 space (and hence a large portion of all TLS clients
on the Internet) by looking at coverage as 1 . . .n actors run packet
processors that aggregate to their own off-path challenger instances.
An IPv4 address is considered covered if its on a path that involves
at least one aggregator when fetching an STH, and our traceroute
data set is used to determine these paths towards real (Google)
and fictitious (NORDUnet) CT-over-DNS resolvers. Aggregating
actors, namely ASes and IXPs, are selected based on two different
top-ranked criteria. Note that Chuat et al. [12] also used network
measurements to evaluate properties of their gossip mechanism,
rather than simulating a network scenario where the log goes rogue
to determine if and when this is detected (which depends more on
assumptions related to the model than the proposed protocol).

5.1 RIPE Atlas Data Set
Our traceroute measurements can be downloaded by anyone on
the RIPE Atlas platform. Use the following measurement identifiers:
11603880–11603884, 11784033–11784042, and 11826645–11826649.

5.1.1 Target selection. We targeted Google’s authoritative CT-
over-DNS server. This is self-explanatory, given that it is the most
realistic plaintext mechanism today. As a secondary target we also
included SUNET’s Plausible CT log. Unlike Google who operates a
world-wide infrastructure, SUNET is part of NORDUnet which is a
Nordic network provider that interconnects education networks.
We hypothesized that there might be interesting differences in the
observed path characteristics, possibly affecting client protection.

5.1.2 Probe selection. The goal of our probe selection process
was to maximize the number of unique ASes (which will represent
blocks of IP addresses that we can evaluate coverage for). The scope
of our search was reduced to IPv4 because many probes support it,
and for redundancy the two most stable probes in each unique AS
were selected. We based the stable criteria on the RIPE Atlas tag
system-ipv4-stable-n, such that a probe got the highest priority
if n=90 days. While many ASes had too few probes to support
redundancy, we ended up requesting 4604 probes. After removing
the redundant probes that delivered the fewest amount of traceroute
results, there were little or no failures amongst the remaining 3512
(Google) and 3488 (NORDUnet) probes: around 100 probes failed at
least once, and among those 24 as well as 17 probes (respectively)
failed more than once. This means that the reliability of RIPE Atlas
platform is remarkably high, and thus it is unnecessary to account
for failures while analyzing the results in Sections 5.3–5.4.

5.1.3 Duration and measurement settings. For all probes we
scheduled a daily traceroute towards Google and NORDUnet. Our
measurements towards Google started onMarch 10 2018, and ended
on March 30 2018. Ten days later on March 20, we started another
measurement towards NORDUnet that ended on April 9 2018. We
used the RIPE Atlas default traceroute settings, resulting in ICMP
port 80 with default spread and Paris traceroute enabled24 (value
16). The response timeout was set to 4000 ms for three 48 byte
packets and 32 max hops. We also hard-coded the targeted IP ad-
dresses because not all probes support DNS lookups. To verify
that the mapping from domain name to IP address remained the
same for Google’s authoritative CT-over-DNS server, we conducted
a daily santiy-check25 from 128 worldwide probes that resolved
ctns.googleapis.com ≡ 216.239.34.64 on the probes. An em-
ployee at SUNET verified that plausible-fe1.ct.nordu.net ≡
194.68.13.48 would remain stable throughout our experiments.

5.2 Other Data Sets
The traceroute data set in Section 5.1 contains lists of IP addresses.
Since we are interested in the actors that control the corresponding
packet processors, i.e., which actors are on a given path, we mapped
each IP address to an AS number and/or IXP identifier using public
data sets from Routeviews26 and CAIDA27. We also relied on RIPE
Atlas probe metadata to map probes to AS numbers28, CAIDA’s
largest AS rank to select aggregators while computing coverage29,
and Routeviews’ data set to annotate each probe with the IPv4
space of its AS (Section 5.3.3). Due to a number of reasons such
annotations are imperfect. For example, there are overlapping IP
blocks in the Routeviews data set, and an IP address may be unused
or reused. Nevertheless, it gives a decent idea of how significant it
is for an aggregator to cover a given probe.

24https://web.archive.org/web/20180511201452/https://paris-traceroute.net/ (n.d.)
25RIPE Atlas measurement identifiers: 11603871 and 11793938.
26The Routeviews MRT format RIBs and UPDATEs Dataset, 2018-03-12 14:00, http:
//archive.routeviews.org/bgpdata/2018.03/RIBS/
27The CAIDA UCSD IXPs Dataset, February 2018, https://www.caida.org/data/ixps/
28https://atlas.ripe.net/docs/api/v2/reference/#!/probes/probelistget (n.d.), accessed
REST API on 2018-04-06
29http://as-rank.caida.org/api/v1 (n.d.), accessed REST API on 2018-04-06
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5.3 Results
Let an AS path be the set of traversed ASes from a probe before
reaching Google or NORDUnet, and an IXP path the set of traversed
IXPs. Now we use our RIPE Atlas data set to examine path length,
path stability, and client coverage as n actors aggregate STHs.

5.3.1 Path length. Figure 4 shows that an AS path tends to be
one hop longer towards NORDUnet. This is evident because there
is a rough off-by-one offset on the x-axis: 27.0%, 51.8% and 15.7% of
all paths traverse one, two and three ASes towards Google, while
28.7%, 45.3% and 15.6% of all paths traverse two, three and four
ASes towards NORDUnet. A similar trend of greater path lengths
towards NORDUnet can be observed for IXPs. For example, 74.0%
of all paths traverse no IXP towards Google, but 58.5% of all paths
traverse a single IXP towards NORDUnet. We explain these results
by referring to the infrastructural differences of our targets: Google
is a worldwide actor, which means that an average path should be
shorter than compared to a region-restricted actor like NORDUnet.
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Figure 4: Path length towards Google and NORDUnet.

5.3.2 Path stability. Figure 5 shows path stability for ASes and
IXPs. The x-axis represents a number of distinct paths towards a
target, and the y-axis a fraction of probes that this applied for. Both
AS and IXP paths tend to change infrequently: while 14.8% (Google)
and 26.9% (NORDUnet) of all probes had at least two distinct AS
paths, the stability is even greater for traversed IXPs. A path is likely
less stable towards NORDUnet because more actors are involved
in the process of getting there. Nevertheless, the observed paths
remained stable for both targets throughout our measurements.
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Figure 5: Path stability towards Google and NORDUnet.

5.3.3 Coverage. To look at the concrete protection of our gossip
mechanism as 1 . . .n actors opt-in, we compiled different lists of
ASes and IXPs that are assumed to host aggregator-challenger
instances. First these lists are used to determine the fraction of

RIPE Atlas probes that traversed at least one aggregator, thereby
receiving split view protection because every off-path challenger
must be on the same view (otherwise an inconsistency is detected
by someone). Second, we annotated each probe with the IPv4 space
of its AS. This gives us an understanding of how well 40% of the
IPv4 space is covered (biased towards Europe and the US due to
using RIPE Atlas). The lists of aggregating actors are based on:

Pop A popularity rank derived form our own measurements.
For example, if actor x , y and z are traversed by three, four
and five probes, then n = 2 suggests that actors y and z
should aggregate to cover as many probes as possible. This
is not necessarily optimal, e.g., z might already cover the
probes of y but not x . Nevertheless, it is a simple approach
that works for the selection of aggregating ASes and IXPs.

CAIDA An AS rank derived from several Internet topology
data sets. ASes receive high rank if, according to CAIDA, they
are globally influential. This is based on factors such as size,
customer cone, and inferred AS business relationships30.

Figure 6 shows probe coverage as 1 . . . 1024 actors opt-in for
aggregation-based gossip. An evident pattern is that the probes are
better protected against split views provided by NORDUnet than
Google. This result is related to path length: given that more ASes
and IXPs tend to be traversed, the likelihood of shared vantage
points and aggregation increases. While it is good to cover RIPE
Atlas probes, the ultimate goal is to understand the direct protection
of clients. As explained already, this lead us to add weights to each
probe. The results are shown in Figure 7, and coverage derived
from Pop tends to decrease: AS CAIDA outperforms AS Pop for
Google despite our attempt to specifically cover as many probes
as possible, while AS Pop still performs better than AS CAIDA for
NORDUnet. If CAIDA’s top-32 aggregated, then client protection
would be significant for Google (31.6%) and NORDUnet (58.1%)
both. IXP aggregation would also be significant, but it appears to
better cover small ASes (cf. weighted and unweighted IXP Pop).
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Figure 6: Probe coverage as a function of aggregation opt-in.

30https://web.archive.org/web/20180608161146/http://as-rank.caida.org/about (n.d.)
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Figure 7: Client coverage as a function of aggregation opt-in.

5.4 Lessons learned
Despite Google’s wide reach, a vast majority of all clients traverse at
least one AS which could aggregate. It is relatively rare to traverse
IXPs towards Google but not NORDUnet. The fact that paths are
stable indicate that an (un)protected client remains (un)protected.
Therefore, the time until split view detection could be long if it is
possible to find an unprotected client, increasing the importance
of aggregation indistinguishability. We finally identified vantage
points that are commonly traversed using Pop, and these vantage
points are represented well by CAIDA’s independent AS ranking.
Little opt-in from ASes and IXPs provides significant protection
against an attacker that is somewhat close to a client (cf. world-wide
infrastructure of Google), and although we got better coverage for
NORDUnet any weak attacker would likely approach the coverage
properties of Google by renting infrastructure that is nearby. Simi-
larly, any modestly sophisticated attacker would circumvent any
IXP aggregator by detecting the IXP itself. Aggregating IXPs may
still be useful though to detect split views due to other reasons than
malicious attackers, as discussed in Section 7.4.

6 RELATEDWORK
Figure 8 categorizes earlier approaches that resemble CT gossip
based on if gossiping is proactive or retroactive. An approach is
proactive if gossip takes place before SCTs and/or STHs reach the
broader audience of clients. Syta et al. proposed proactive witness
cosigning, in which an STH is collectively signed by a large number
of witnesses and at most a fraction of those can be faulty to ensure
that a benevolent witness observed an STH [49]. STH cross-logging
is similar in that an STH must be proactively disclosed in another
transparency log to be trusted, avoiding any additional cosigning
infrastructure at the cost of reducing the size and diversity of the
witnessing group31. Tomescu and Devadas [50] suggested a similar
cross-logging scheme, but split-view detection is instead reduced
to the difficulty of forking the Bitcoin blockchain (big-O cost of

31https://mailarchive.ietf .org/arch/msg/trans/7eL7nu3eaAxEf4snLj7w0TUnrwE (Jan-
uary 2017), accessed 2018-06-13. See also Google’s ‘minimal gossip’ in footnote 4.

Gossip

Proactive

STH cosigning [49]

STH cross-logging [28, 29, 50]

STH pushing [48]

Retroactive

SCT feedback [41]

STH pooling [12, 41]

CT honey bee [3]

Trusted auditing [41]

Implicit via multipath [26]

Figure 8: A categorization of approaches towards CT gossip.

downloading all block headers as a TLS client). Finally, STH pushing
assumes a secure channel to ensure that a group of TLS clients get
the same STH history pushed from a shared trusted third-party [48].

A gossip mechanism is retroactive if gossip takes place after
SCTs and/or STHs reach the broader audience of clients. Chuat
et al. proposed that TLS clients and TLS servers be modified to pool
exchanged STHs and associated consistency proofs [12]. Nordberg
et al. continued this line of work, suggesting privacy-preserving
client-server pollination of fresh STHs [41]. It was also proposed
that clients feedback SCTs and certificate chains on server revisits,
and that trusted auditor relationships could be engaged if privacy
does not matter. In a sense the latter is similar to the formalized
client-monitor gossip of Chase and Meiklejohn [11], as well as
the CT honey bee project where a client-enabled process fetches
and submits STHs to a pre-compiled list of auditors [3]. Laurie
suggested that a client can resolve privacy-sensitive SCTs to privacy-
insensitive STHs via DNS [33] (which are easier to gossip). Private
information retrievals could likely achieve something similar [36].
Assuming that TLS clients are indistinguishable while interacting
with the log, split-view detection can also be implicit as proposed
by Gunn et al. for the verifiable key-value store in CONIKS [26, 39].

Given that aggregation-based gossip takes place after an STH
is issued, it is a retroactive approach. As such, we cannot protect
an isolated client from split-views [49]. Similar to STH pooling and
STH pollination, we rely on client-driven communication and an
existing infrastructure of packet processors to aggregate (cf. using
TLS servers as pools). Our off-path verification is based on the
same multi-path probing and indistinguishability assumptions as
Gunn et al. [1, 26, 51]. Further, given that aggregation is application
neutral and deployable on hosts, it could provide gossip for the CT
honey bee project if it used a plaintext mechanism. Our approach
coexists well with witness cosigning and cross-logging since the
threat models are different, but not necessarily with STH pushing
if the secure channel is encrypted because clients are unlikely to
fetch anything that is already provided by a trusted third-party.
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7 DISCUSSION
The benefit of our gossipmechanisms compared to browsing-centric
and vendor-specific approaches is that it is application neutral. For
example, on the web our approach covers a plethora of HTTPS
clients, ranging from niche web browsers to command line tools
and embedded libraries that are vital to protect but yet lack the re-
sources of major browser vendors [4, 16]. Being application neutral
means that our approach works for any type of transparency log,
including binary transparency and generalizations of CT [21, 29].

7.1 Assumptions and Limitations
Aggregation-based gossip is limited to network traffic that packet
processors can observe. The strongest type of attacker in this
setting—who can completely isolate a client—trivially defeats our
gossip mechanism and other retroactive approaches (see Section 6).
A weaker attacker cannot isolate a client, but is located nearby in a
network path length sense. This limits the opportunity for packet
processor aggregation, but an attacker cannot rule it out given
aggregation indistinguishability. Section 4 showed based on perfor-
mance that it is non-trivial to distinguish between (non-)aggregating
packet processors on two different targets using P4 and XDP. Off-
path challengers must also be indistinguishable from one another
to achieve implicit gossip. While we suggested the use of anonymity
networks like Tor, a prerequisite is that this is in and of itself not
an aggregation distinguisher32. Therefore, we assume that other
entities also use off-paths to fetch and verify STHs. The fact that a
unique STH is not audited from an off-path could also be an aggre-
gation distinguisher. To avoid this we could rely on a verifiable STH
history33 and wait until the next MMD to audit or simply monitor
the full log so that consistency proofs are unnecessary.

The existence of multiple network paths are fundamental to
the structure and functioning of the Internet. A weak attacker
may use IP fragmentation such that each individual STH fragment
is injected from a different location to make aggregation harder,
approaching the capabilities of a stronger attacker that is located
closer to the client. This is further exacerbated by the deployment
of multi-path transport protocols such as MPTCP, which can also be
fragmented. Looking back at our RIPE Atlas network measurements
in Section 5, the results towards Google’s world-wide infrastructure
better represent an active attacker that takes some measures to
circumvent aggregation by approaching a client nearby the edge.
Given that the likelihood of aggregation is high if any IXP is present
(Figures 6–7), we suspect that deployment of aggregation at popular
and well-connected IXPs are the most likely to be circumvented.

7.2 Deployment
Besides aggregating at strategic locations in the Internet’s backbone,
ISPs and enterprise networks have the opportunity to protect all

32For reference, Tor has about two million daily users: https://web.archive.org/
web/20180522081849/https://metrics.torproject.org/userstats-relay-country.html
(February–May 2018). Note that low-latency anonymity networks like Tor are
susceptible to traffic confirmation and correlation attacks where the attacker observes
traffic from the packet processor and is in control of the response from the CT logs. A
strictly isolated packet processor may not be able to hide that it is challenging the logs.
33https://web.archive.org/web/20170806160119/https://mailarchive.ietf .org/arch/
msg/trans/JbFiwO90PjcYzXrEgh-Y7bFG5Fw (May 2017).

of their clients with relatively little effort. Deployment of special-
purpose middleboxes are already prevalent in these environments,
and then the inconvenience of fragmentation tends to go away due
to features such as packet reassembly. Further, an attacker cannot
trivially circumvent the edge of a network topology—especially
not if aggregation takes place on an end-system: all fragments
are needed to reassemble a packet, which means that multi-path
fragmentation is no longer a threat. If aggregation-based gossip
is deployed on an end-system, STHs could be hooked using other
approaches than P4/XDP. For example, shim-layers that intercepts
TLS certificates higher up in the networking stack were already
proposed by Bates et al. [5] and O’Neill et al. [42]. In this setting an
end-system is viewed as the aggregating packet processor, and it
reports back to an off-path challenger that may be a local process
running on the same system or a remote entity, e.g., a TelCo could
host challengers that collect aggregated STHs from smartphones.

While we looked at programming the data plane of physical
packet processors to instantiate the aggregation step, there are
other options and locations for STH aggregation to take place:

• Hypervisors and software switches [46] that reside inside
virtualized environments could protect many virtual hosts.

• DNS servers are ideal for aggregating STHs requested via CT-
over-DNS, e.g., dump the cache periodically to a challenger.

• Similar to DNS servers, so called Tor exits operate DNS
caches for all clients that perform DNS queries over Tor.34

• NAT gateways—especially carrier-grade NAT—are naturally
isolating clients behind network choke-points.

In other words, P4 and XDP are instantiation examples of the
aggregation step. Custom hardware description languages, simply
C for some special-purpose middleboxes, or OS-level shim-layers
may be more appropriate depending on the used plaintext source,
the target, and the surrounding network topology.

7.3 Retroactive Gossip Benefits From Plaintext
The proliferation of middleboxes that inspect and shape packet
headers contradict the intended design of the Internet. As opposed
to a dumb core that forwards IP packets, network and security
functions are often embedded which cause complex processing
dependencies and protocol ossification [30]. Since middleboxes
that inspect and modify packets have caused security and protocol
issues [20, 32], the current mindset is to encrypt everything [32].
Our work is controversial because it goes against this mindset
and advocates that STHs should be communicated in plaintext.
We argue that this makes sense in the context of STHs due to the
absence of privacy concerns and because the entire point of gossip
is to make STHs available (rather than being end-to-end only).
It is also beneficial if STHs can be easily parsed in-line to help
packet processors extract them from packets efficiently. The idea
of intentionally exposing information to the network is not new;
MPQUIC is designed like this to support flexible traffic shaping [13].

34In addition to implicit gossip, notice that an STH requested by a challenger in
plaintext via Tormay be aggregated again by a different aggregator-challenger instance.
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While we looked at CT-over-DNS as a plaintext source, there is a
push towards DNS-over-TLS35 and DNS-over-HTTPS36. Wide use
of TLS may undermine our approach towards gossip, but ironically
the security of TLS could be jeopardized unless gossip is deployed.
In other words, long term gossip is an essential component of CT
and other transparency logs to avoid becoming yet another class
of trusted third-parties. If proactive approaches such as witness
cosigning are rejected in favour of retroactive mechanisms, then
ensuring that STHs are widely spread and easily accessible is vital.
With care taken to ensure that a recent STH is not privacy sensitive
(refer to the discussion of Section 2.1.2), it need not be confidential.
Secure channels also provide integrity and replay protection, but an
STH is already signed by logs and freshness is covered by MMDs as
well as issue frequency to protect privacy. A valid argument against
exposing any plaintext to the network is protocol ossification. We
emphasize that our design motivates why packet processors should
fail open: otherwise there is no aggregation indistinguishability.

7.4 Indistinguishability and Herd Immunity
An attacker that gains control over a CT log is bound to be more
risk averse than an attacker that compromises a CA. There is an
order of magnitude less logs than CAs (few dozens as opposed to
hundreds), and client vendors are likely going to be exceptionally
picky when it comes to accepted and rejected logs. We have already
seen examples of this, including Google Chrome disqualifying logs
that made mistakes: Izenpe used the same key for production and
testing37, and Venafi suffered from an unfortunate power outage38.
Risk averse attackers combined with packet processors that are
aggregation indistinguishable may lead to herd immunity: despite
a significant fraction of clients that lack aggregators, a sense of
indirect protection can be provided because the risk of eventual
detection is unacceptable to many attackers. Hof and Carle [29] and
Nordberg et al. [41] also discussed herd immunity briefly before us.

Ironically, announcing gossip-based aggregation ‘as-a-service’
through marketing may be beneficial for herd immunity and clients
despite violating the notion of aggregation indistinguishability. This
is especially the case for aggregators on the edge that cannot be
bypassed, such as ISPs and enterprise networks. However, actively
probing for and verifying whether aggregation is in place is still a
key capability for any attacker. For example, an announcement may
not follow through or only a subset of all paths have an aggregator.

8 CONCLUSIONS
Soon wide spread modifications of TLS clients are inevitable to
support CT gossip. We proposed that these modifications include
challenging the logs to prove certificate inclusion based on STHs
fetched in plaintext, enabling the traversed packet processors to
assist in split view detection retroactively by aggregating STHs that
are verified for consistency periodically using an off-path. Beyond

35https://web.archive.org/web/20180422194047/https://security.googleblog.com/
2018/04/dns-over-tls-support-in-android-p.html (April 2018)
36https://web.archive.org/web/20180512125541/https://blog.cloudflare.com/dns-
resolver-1-1-1-1/ (April 2018)
37https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/
qOorKuhL1vA (May 2016), accessed 2018-06-09
38https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/
KMAcNT3asTQ (March 2017), accessed 2018-06-09

being an application neutral approach that is complementary to
proactive gossip, a compelling aspect is that core packet processors
are used (rather than clients) as a key building block to realize
implicit gossip; should a consistency issue arise, it is already in the
hands of an entity that is well equipped to investigate the cause
manually. Considering that far from all TLS clients are backed by big
browser vendors—not to mention other use-cases of CT in general—
it is likely a long-term win to avoid pushing complex gossip logic
into all the different types of clients when compared to the order of
magnitude fewer packet processors that can aggregate to off-path
challengers. While taking the risk of ossification into account by
suggesting that packet processors fail open to provide an essential
security property—namely aggregation indistinguishability—our
approach offers rapid incremental deployment with high impact on
a significant fraction of Internet users. The notion of aggregation
indistinguishability also motivates why our design does not boost
any performance or privacy aspects by caching CT-related traffic.
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A AGGREGATION LATENCY
Figure 9 shows a latency test for the P4-enabled NetFPGA target.
There is a non-negligible difference between normal routing and
STH aggregation which is less than 5 µs. Most importantly, however,
we cannot observe any distinguisher for the different STH intervals
as we aggregate.
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Figure 9: Latency as a function of match rate (P4-NetFPGA).
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