

Evaluating and Mitigating Software

Supply Chain Security Risks

Robert J. Ellison

John B. Goodenough

Charles B. Weinstock

Carol Woody

May 2010

TECHNICAL NOTE
CMU/SEI-2010-TN-016

Research, Technology, and System Solutions (RTSS) and CERT Programs
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

I | CMU/SEI-2010-TN-016

Table of Contents

Executive Summary ix

Abstract xi

1 Introduction 1
1.1 The Software Supply Chain 1

1.1.1 Terminology 1
1.1.2 The Software Supply Chain Problem 2

1.2 Software Supply Chain Security Risk 4
1.3 Outline of this Report 5

2 Supply Chain Security Risk Analysis and Mitigations 7
2.1 Acquisition and Operational Contexts 8
2.2 Concentrate the Analysis—an Attack Surface 9

2.2.1 The Use of Attack Surface Analysis in Different Acquisition Phases 10
2.3 Assess the Security Risk—Threat Modeling 12

2.3.1 The Use of Risk Assessments in Different Acquisition Phases 14
2.4 Summary and Final Note 16

3 An Assurance Case Reference Model for Software Supply Chain Security Risk 17
3.1 Introduction 17
3.2 The Level 1 Supplier Follows Practices that Reduce Supply Chain Security Risk 19
3.3 The Delivered/Updated Product Is Acceptably Secure 23
3.4 Methods of Transmitting the Product 23
3.5 The Product Is Used in a Secure Manner 25
3.6 Putting It All Together 25
3.7 Evaluating the Risk 27

4 Supply Chain Security Risk Review of a Current Program 28
4.1 Program Supply Chain 28
4.2 Evaluation of the Program’s Supply Chain Security Risk 28

4.2.1 Supplier Capability 29
4.2.2 Product Security 29
4.2.3 Product Logistics 31
4.2.4 Operational Product Control 31

4.3 Review Conclusions 31

5 Summary 33

References 34

II | CMU/SEI-2010-TN-016

III | CMU/SEI-2010-TN-016

List of Figures

Figure 1: A Possible Supply Chain Relevant to the Initiation and Development Phases of the
Acquisition Life Cycle 3

Figure 2: A Possible Supply Chain for the Operations/Maintenance Phase of the Acquisition Life
Cycle 3

Figure 3: Attack Surface Example 13

Figure 4: Assurance Case Structure 18

Figure 5: Top-Level Assurance Case 19

Figure 6: Assurance Case for Supplier Practices 20

Figure 7: Supplier Practices Supporting Development of Secure Products 22

Figure 8: The Delivered/Updated Product Is Acceptably Secure 23

Figure 9: Methods of Transmitting the Product to Its User Guard Against Introduction of Malware
While in Transit 24

Figure 10: The Product Is Used in a Secure Manner 24

Figure 11: Putting the Assurance Case Together 26

Figure 12: Evaluating the Risk 27

IV | CMU/SEI-2010-TN-016

V | CMU/SEI-2010-TN-016

List of Tables

Table 1: Acquisition Life-Cycle Phases and Corresponding Supply Chain Security Risk
Management Activities 5

VI | CMU/SEI-2010-TN-016

VII | CMU/SEI-2010-TN-016

Acknowledgements

We are grateful for the comments from those who reviewed a draft of this report: Nancy Mead,

Julia Allen, Michele Moss, and Nadya Bartol.

VIII | CMU/SEI-2010-TN-016

IX | CMU/SEI-2010-TN-016

Executive Summary

Managing supply chain risk is of widespread interest. Typically the focus is on manufacturing,

where the goal is to minimize disruptions that would affect production or to ensure that low-

quality or counterfeit products do not get incorporated into systems. Although software supply

chain risk management has some of these aspects (e.g., a system may depend on the timely deli-

very of a subcontractor’s product), the relative ease with which software can be modified changes

the supply chain focus to (1) minimizing opportunities for unauthorized changes and (2) having

appropriate methods for gaining confidence that such opportunities have been minimized, particu-

larly by lower level participants in the supply chain. In addition, because software systems can be

configured and used in ways that increase security risk, the end user of a software system has

more responsibility to ensure against unauthorized product modification than is usually the case

for end users of hardware systems. For software systems, the supply chain security risk manage-

ment process must consider the potential introduction of security risks during deployment, confi-

guration, and system operation, as well as during design and development.

For those who commission the development of systems (such as the Department of Defense

[DoD]), limiting supply chain security risks initially means defining the security properties

needed for the system being acquired, then evaluating and monitoring a supplier’s ability to pro-

duce systems having these properties. Monitoring requires contractual language that gives the

right to review certain information (such as the supplier’s training and coding practices) as well as

the technical capacity to conduct appropriate reviews. In addition, the acquiring organization must

evaluate the supplier’s approach to managing its software supply chain security risks—the risks it

inherits from its suppliers.

The acquiring organization’s job doesn’t end with vetting a supplier: the delivered system must be

configured appropriately when it is installed, and procedures must be in place to ensure that the

system is operated in a secure manner (e.g., that newly discovered vulnerabilities are patched and

that end-user adaptations don’t introduce new vulnerabilities).

In this report, we identify software supply chain security risks that must be managed throughout

the acquisition life cycle, and we specify the evidence that must be gathered to determine whether

these risks have been appropriately mitigated. Evidence of supply chain security risk mitigation

needs to be gathered at every phase of an acquisition’s life cycle: initiation, development, confi-

guration/deployment, operations/maintenance, and disposal. Required evidence includes analyses

of a supplier’s ability to produce secure software, security analyses of delivered products, evalua-

tions to ensure control of access to the product at each step in the supply chain, and analyses of

procedures for ensuring that the product is configured appropriately throughout its operational

life.

This report provides an assurance case reference model showing how the gathered evidence is

combined into an argument demonstrating that supply chain security risks have been addressed

adequately throughout the acquisition life cycle. The reference model emphasizes two key strate-

gies for controlling security risk: (1) identifying and monitoring a system’s attack surface and (2)

developing and maintaining a threat model. An implementation of these strategies requires differ-

X | CMU/SEI-2010-TN-016

ent actions at different phases of the acquisition life cycle, and this is reflected in the reference

model.

The reference model is only an initial version; we expect changes to be made as we gain more

experience with applying it to various programs and projects. Despite its preliminary state, we

used it to guide our analysis of a specific DoD program to see to what extent appropriate evidence

could be gathered and to what extent the evidence indicated that supply chain issues were being

addressed adequately. Among other findings, we discovered that due to contractual limitations,

much of the desired evidence could not be made available to the government without a contractual

modification (and presumably, increased cost). In addition, the project was typical in its focus on

limiting unauthorized access through infrastructure defenses such as firewalls, authentication pro-

tocols, and role-based access control. As is typical in our experience, little attention was being

given to reducing the security impact of application code vulnerabilities, which are the major

sources of security breaches in modern, web-enabled, systems today.

XI | CMU/SEI-2010-TN-016

Abstract

The Department of Defense (DoD) is concerned that security vulnerabilities could be inserted into

software that has been developed outside of the DoD’s supervision or control. This report presents

an initial analysis of how to evaluate and mitigate the risk that such unauthorized insertions have

been made. The analysis is structured in terms of actions that should be taken in each phase of the

DoD acquisition life cycle.

XII | CMU/SEI-2010-TN-016

1 | CMU/SEI-2010-TN-016

1 Introduction

1.1 The Software Supply Chain

1.1.1 Terminology

For the military, supply chains typically involve the movement of materials from home base to

troops in theater. The responsibility for managing these supply chains falls to the acquisition and

logistics experts. Traditionally, supply chains have also been linked to the movement of raw mate-

rials and subcomponents through a manufacturing process for consumer products such as auto-

mobiles and appliances. “A typical supply chain begins with ecological and biological regulation

of natural resources, followed by the human extraction of raw material, and includes several pro-

duction links (e.g., component construction, assembly, and merging) before moving on to several

layers of storage facilities of ever-decreasing size and ever more remote geographical locations,

and finally reaching the consumer” [Wikipedia 2009a].

Supply chain risk management usually
1
 refers to limiting the risk of supply disruptions, typically

disruptions that delay deliveries of an item to a manufacturer or consumer. The term can also refer

to ensuring that inferior or counterfeit components are not introduced by suppliers. Both kinds of

risks can occur in the software supply chain. For example, failure to produce or deliver a software

component on time can delay delivery of a software system that depends on the component, and

the delivery of faulty code or use of an inferior substitute software component can compromise

the behavioral properties of the entire system in which the component is placed.

In this report, we focus on reducing the risk that an unauthorized party can change the behavior of

software in a way that adversely affects its security properties. Security properties include confi-

dentiality (preventing the unauthorized disclosure of information), integrity (preventing unautho-

rized changes to data), and availability (assurance that the capability provided by the software can

be used when needed) [Wikipedia 2009c].

We use the term system when emphasizing visibility into the internal elements of software, in-

cluding visibility of how the software is built and maintained. Typically, a system is custom built

for an acquirer by a contractor, but systems may also be produced by internal elements of an or-

ganization. Because the software is custom built, the acquirer has (if desired) maximum visibility

into its internal elements (e.g., its design or code) as well as the processes used to build and main-

tain it.

We use the term product when emphasizing the external characteristics and functions of software,

usually with the implication that neither its internal elements nor the processes used to build and

maintain it are readily available for examination. Typically, we consider a product to be software

produced by a vendor for sale to a variety of customers (e.g., a COTS product) but we sometimes

1
 Wikipedia defines it this way: “Supply Chain Risk Management (SCRM) is a discipline of Risk Management

which attempts to identify potential disruptions to continued manufacturing production and thereby commercial
financial exposure” [Wikipedia 2009b].

2 | CMU/SEI-2010-TN-016

refer to a completed system as a product when we mean to emphasize its properties and capabili-

ties rather than its internals or how it was built.

In this report, a supplier is any organization that provides products or services needed when de-

veloping, distributing, operating, or maintaining software.

1.1.2 The Software Supply Chain Problem

As outsourcing and expanded use of commercial off-the-shelf (COTS) and open source software

products increase and as end users exploit opportunities to reconfigure or make limited additions

to deployed products and systems, supply chain security risk becomes a growing concern. Soft-

ware is rarely defect-free, and many common defects
2
 can be readily exploited by unauthorized

parties to alter the security properties and functionality of the software for malicious intent. Such

defects can be accidentally or intentionally inserted into the software at any point in its develop-

ment or use, and subsequent acquirers and users have limited ways of finding and correcting these

defects to avoid exploitation.

Participation in the software supply chain is global, and knowledge of who has touched each spe-

cific product or service may not be visible to others in the chain. Typically, an acquirer such as a

Department of Defense (DoD) program office will only know about the participants directly con-

nected to it in the supply chain and will have little insight into its suppliers’ suppliers, as shown in

Figure 1. Each of these indirect suppliers can insert defects for future exploitation.

Supply chain security risks must be addressed in every phase of the acquisition life cycle: initia-

tion, development, configuration/deployment, operations/maintenance, and disposal. The view of

the supply chain in Figure 1 applies primarily to the initiation and development phases of the ac-

quisition life cycle. A somewhat different picture applies to the operations/maintenance phase, as

outlined in Figure 2, where software supply chain security risk occurs through the delivery of sus-

tainment upgrades and configuration changes. In addition, coding and design defects newly iden-

tified and reported as vulnerabilities may require patches and special security monitoring to pre-

vent compromise, and these patches are delivered by various suppliers.

Software acquisition has grown from the delivery of stand-alone systems to the provisioning of

capabilities integrated within a larger system-of-systems (SoS) context. This integration extends

supply chain security risk. For example in the DoD, the Global Information Grid (GIG) intercon-

nects all systems and software across the organization. Thus, the opportunity to introduce soft-

ware security defects in a GIG product or service presents a supply chain security risk to every

other member of the GIG.

2
 For example, “Improper Input Validation” is a common application software defect. It allows an attacker to

present “input in a form that is not expected by the rest of the application. This … may result in altered control
flow, arbitrary control of a resource, or arbitrary code execution” [MITRE 2009a]. Improper Input Validation is
the highest ranked software error on the Common Weakness Enumeration’s Top 25 list of the most dangerous
programming errors [MITRE 2009b].

3 | CMU/SEI-2010-TN-016

Figure 1: A Possible Supply Chain Relevant to the Initiation and Development Phases of the

Acquisition Life Cycle

Figure 2: A Possible Supply Chain for the Operations/Maintenance Phase of the Acquisition Life Cycle

4 | CMU/SEI-2010-TN-016

1.2 Software Supply Chain Security Risk

Of critical concern in today’s highly interconnected software environment is the risk that an unau-

thorized party would change a product or system in ways that adversely affect its security proper-

ties. These software security risks are introduced into the supply chain in several ways:

 poor security requirements that lead to ineffective security considerations in all acquisition

steps.

 coding and design defects incorporated during development that allow the introduction of

code by unauthorized parties when the product or system is fielded. In addition, there are

those defects that compromise security directly by allowing unauthorized access and execu-

tion of protected functionality.

 improper control of access to a product or system when it is transferred between organizations

(failures in logistics), allowing the introduction of code by unauthorized parties.
3

 insecure deployed configuration (e.g., a deployed configuration that uses default passwords).

 operational changes in the use of the fielded product or system that introduce security risks or

configuration changes that allow security compromises (configuration control and patch man-

agement).

 mishandling of information during product or system disposal that compromises the security

of current operations and future products or systems.

Software supply chain security risk exists at any point where organizations have direct or indirect

access to the final product or system through their contributions as a supplier. Suppliers include

distributors, transporters, and storage facilities, as well as organizations directly responsible for

creating, enhancing, or changing product or system content. Without mitigation, these risks are

inherited from each layer in the supply chain, increasing the likelihood of a security compromise.

Reduction of supply chain security risk requires paying attention to all of the following within the

acquisition life cycle:

 acquirer capabilities: policies and practices for defining the required security properties of a

particular product or system (not addressed in this initial version)

 supplier capability: ensuring that a supplier has good security development and management

practices in place throughout the life cycle

 product security: assessing a completed product’s potential for security compromises and

determining critical risk mitigation requirements

 product logistics: the methods for delivering the product to its user and determining how

these methods guard against the introduction of malware while in transit

 operational product control: ensuring that configuration and monitoring controls remain

active as the product and its use evolve over time

3
 Focusing on controls to prevent supply chain tampering with a software product is a principle objective of the

Software Supply Chain Integrity Framework being developed by SAFECode [Simpson 2009]. The framework
pays particular attention to controls needed to ensure that products are moved securely along the supply chain
(i.e., that customers receive the products a supplier intended to provide).

5 | CMU/SEI-2010-TN-016

 disposal: ensuring software data and modules are effectively purged from hardware, loca-

tions, libraries, etc. when removal is needed (not covered in this initial version)

Addressing these risks impacts each phase in the acquisition life cycle and becomes a shared re-

sponsibility of the program office, each supplier, and operations management. Both the security of

the supply chain and the security of the resulting product or system need to be considered. For

each acquisition life-cycle phase, Table 1 identifies key activities that are needed in order to focus

the proper attention on software supply chain security risk.

Table 1: Acquisition Life-Cycle Phases and Corresponding Supply Chain Security Risk Management

Activities

Acquisition Phase Key Activities for Managing Software Supply Chain Security Risks

Initiation Perform an initial software supply chain security risk assessment and es-

tablish required security properties.

Include supply chain security risk management as part of the RFP.

Develop plans for monitoring suppliers.

Select suppliers that address supply chain security risk.

Development Monitor practices for supply chain security risk management.

Maintain awareness of supplier’s sub tier relationships.

Configuration/Deployment Assess delivered products/systems.

Configure/integrate with consideration of supply chain security risks.

Develop user guidance to help mitigate supply chain security risk.

Operations/Maintenance Manage security incidents.

Review operational readiness.

Monitor component/supplier.

Disposal Mitigate risks of information disclosure during disposal.

1.3 Outline of this Report

Section 2 of this report introduces an approach for identifying software supply chain security risk

and uses this approach to provide details of how the key risk management activities in Table 1

could be performed in different phases of the life cycle. Section 3 provides an initial version of an

assurance case reference model covering three segments of the acquisition life cycle (develop-

ment, configuration/deployment, and operations/maintenance). The model identifies what supply

chain security risks need to be addressed, what evidence needs to be gathered to show that the

risks have or have not been addressed adequately, and how the evidence supports claims that risks

have been adequately addressed. Section 4 summarizes a review of a current program acquisition

using the assurance case reference model presented in Section 3. The intent of this review was to

exercise the reference model and to identify some of the ways in which current practice does and

does not address software supply chain security risk. Section 5 summarizes the report and sug-

gests future directions.

The analysis presented in this document is just an initial description of how to determine whether

supply chain security risks are being adequately addressed. In particular, we focus on supplier

capabilities to manage supply chain risks and don’t address acquirer capabilities. We also don’t

6 | CMU/SEI-2010-TN-016

address what supply chain risks need to be managed when a system is retired. Analysis of these

aspects of software supply chain security risk should be included in future revisions of this report,

and in particular, in revisions of the reference model presented in Section 3.

7 | CMU/SEI-2010-TN-016

2 Supply Chain Security Risk Analysis and Mitigations

Software vulnerabilities, in general, are a major contributor to software security risk. It is imposs-

ible, as well as impractical, to eliminate all software vulnerabilities, many of which can lead to

supply chain security risk. However, there are key strategies for reducing and managing such

risks. Our discussion is based on current thinking and emerging practices that are generally consi-

dered to be most effective in managing security risks arising from the nature of software and its

role in the software supply chain.

Two powerful strategies—one focused on understanding and controlling a system’s attack sur-

face
4
 and the other focused on understanding potential threats (threat modeling)—are key to mak-

ing supply chain security risk management tractable. A system’s attack surface characterizes po-

tential vectors for compromising a system. Threat modeling characterizes which aspects of the

attack surface are most at risk for exploitation.
5
 These concepts are useful during the develop-

ment, deployment, and operations/maintenance of a system. They help guide what information

must be gathered and how it can be best used to help prioritize and mitigate (if not eliminate)

supply chain security risks.

Software security risks addressed by threat modeling and attack surface analysis are quite differ-

ent from those that infrastructure security mechanisms (such as security regulations and informa-

tion assurance processes) tend to address. Infrastructure mechanisms prevent unauthorized indi-

viduals from gaining access to system code and data. Such mechanisms include the appropriate

deployment of firewalls, the use of strong passwords for authentication, and authorization me-

chanisms such as role-based access control. These can be effective against certain classes of

threats, but as systems become more dynamically connected and as operating system and network

security vulnerabilities are reduced, application software itself becomes the next attack target.

Security risks in application code have been ignored in part because of the faulty assumption that

firewalls and other perimeter defenses will deny access to those with malicious intent. However,

these defenses are insufficient as the user base for DoD applications grows into the tens of thou-

sands and includes DoD organizations with different security sensitivities as well as coalition

partners. In such environments, application code itself is vulnerable to attack and thus becomes a

source of software security risk. This risk is compounded because application developers typically

have not been trained in how to develop secure software and so are unaware of the security risks

that can be introduced during application design and coding.

Mitigation of software supply chain security risk requires that more attention be given to applica-

tion software security. Today, over 25 large-scale application software security initiatives are un-

derway in organizations as diverse as multi-national banks, independent software vendors, the

U.S. Air Force, and embedded systems manufacturers. The Software Assurance Forum for Excel-

4
 The notion of an attack surface was originally defined by Howard and Lipner [Howard 2003]. See Section 2.2.

5
 Threat modeling is part of Microsoft’s Secure Development Lifecycle [Swiderski 2004, Howard 2006]. For more

information, go to http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx.

http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx

8 | CMU/SEI-2010-TN-016

lence in Code (SAFECode), an industry-led non-profit organization that focuses on the advance-

ment of effective software assurance methods, published a report on secure software development

[Simpson 2008]. In 2009, the first version of The Building Security in Maturity Model (BSIMM)

was published [McGraw 2009].
6
 The Software Assurance Processes and Practices working

group,
7
 operating under the sponsorship of the Department of Homeland Security’s National Cy-

ber Security Division, has released several relevant documents, including a Process Reference

Model for Assurance linked to the CMMI-DEV model [SAPPWG 2008]. In addition, the Open

Web Applications Security Project (OWASP) has developed a Software Assurance Maturity

Model (SAMM) for software security [OWASP 2009]. Finally, the build-security-in website
8
 con-

tains a growing set of reference materials on software security practices.

Increased attention on secure application software components has influenced security testing

practices. All of the organizations contributing to the BSIMM do penetration testing,
9
 but there is

increasing use of fuzz testing. Fuzz testing creates malformed data and observes application beha-

vior when such data is consumed. An unexpected application failure due to malformed input is a

reliability bug and possibly a security bug. Fuzz testing has been used effectively by attackers to

find vulnerabilities. For example, in 2009, a fuzz testing tool generated XML-formatted data that

revealed an exploitable defect in widely used XML libraries [Codenomicon 2009]. At Microsoft,

about 20 to 25 percent of security bugs in code not subject to secure coding practices are found

via fuzz testing [Howard 2006].

2.1 Acquisition and Operational Contexts

Supply chain security risks and their mitigations depend on the kind of acquisition and the phase

of the acquisition life cycle. Acquisitions can include the purchase of commercially available

software, development of custom software, an enhancement to an existing system, or maintenance

activities such as patching software defects in existing systems. For a custom-developed system,

an acquirer has the opportunity to specify security properties the system is required to satisfy

(e.g., what information is to be protected, what availability is expected, and what degree of pro-

tection is desired). In this kind of acquisition, the acquirer can also impose requirements for evi-

dence that the required security properties will hold, such as

 architecture and design analyses

 information on development coding practices

 the existence of an RFP requirement to provide an attack surface analysis and mitigation plan

 plans to include security testing in acceptance tests

 the results of security tests

6
 BSIMM was created from a survey of nine organizations with active software security initiatives that the authors

considered to be the most advanced. The nine organizations were drawn from three verticals: financial services
(4), independent software vendors (3), and technology firms (2). Those companies among the nine who agreed
to be identified include: Adobe, The Depository Trust & Clearing Corporation (DTCC), EMC, Google, Microsoft,
QUALCOMM, and Wells Fargo.

7
 See https://buildsecurityin.us-cert.gov/swa/procwg.html.

8
 See https://buildsecurityin.us-cert.gov/daisy/bsi/home.html.

9
 Penetration tests attempt to break into or compromise systems.

https://buildsecurityin.us-cert.gov/swa/procwg.html
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html

9 | CMU/SEI-2010-TN-016

Of course, the acquirer of a commercially available product can only indirectly evaluate a suppli-

er’s ability to produce a secure software product, but the acquirer can test the product’s security

properties.

Analysis of supply chain security risks and mitigations goes beyond product and supplier assess-

ments and has to include deployment and use. A typical software product provides more functio-

nality than is required, and an attacker may be able to exploit those unused features. The required

use also affects risks and mitigations. For example, a product feature that requires the processing

of JavaScript or XML-formatted input expands the scope of the analysis of supply chain security

risks and mitigations. Products are typically selected for their functionality (and not for their secu-

rity properties), so a fully functional product may have inherent supply chain security risks that

have to be mitigated during deployment.

2.2 Concentrate the Analysis—an Attack Surface

In 2003, Howard observed that attacks on Windows systems typically exploited a short list of fea-

tures including [Howard 2003a]:

 open ports, services running by default, and services running with system-level privileges

 dynamically generated web pages

 enabled accounts, including those in administrative groups

 enabled guest accounts, weak access controls

Instead of considering the whole system, Howard proposed that analysis concentrate on the fea-

tures that were most likely to be exploited. These features compose the system’s attack surface. A

system with a greater number of exploitable features has a larger attack surface and is at greater

risk of exploitation. Howard’s initially intuitive description of an attack surface led to a more

formal definition with the following dimensions [Howard 2003b]:

 targets: data resources or processes desired by attackers (a target could be a web browser, web

server, firewall, mail client, database server, etc.)

 enablers: processes and data resources used by attackers to reach a target (e.g., web services,

a mail client, XML, JavaScript, or ActiveX
10

)

 channels and protocols (inputs and outputs): used by attackers to obtain control over targets

 access rights: constraints intended to limit the set of actions that can be taken with respect to

data items or functionality

As an example of the relation between attack surface analysis and software supply chain risk,

consider that an increasing number of applications are XML-enabled, and XML is an attack sur-

face enabler. The Finnish firm Codenomicon reported in August 2009 that vulnerabilities existed

in XML libraries from Sun, the Apache Software Foundation, and the Python Software Founda-

tion [Codenomicon 2009]. These vulnerabilities could result in successful denial-of-service at-

tacks on any applications built with them. This is an example of software supply chain security

10

 Mechanisms such as JavaScript or ActiveX give the attackers a way to execute their own code.

10 | CMU/SEI-2010-TN-016

risk, since the applications built using these libraries now have security vulnerabilities created not

by the application builder but by the vendor of the XML product used in building the application.

An attack surface analysis reduces supply chain security risk in several ways:

 A system with more targets, more enablers, more channels, or more generous access rights

provides more opportunities to the attacker. An acquisition process designed to mitigate

supply chain security risks should include requirements for a reduced and documented attack

surface.

 The use of product features influences the attack surface for that acquirer. The attack surface

can define the opportunities for attacks when usage changes.

 Attack surface analysis helps to focus attention on the code that is of greatest concern for se-

curity risk. If the code is well- partitioned so that features are isolated, reducing the attack sur-

face can also reduce the code that has to be evaluated for threats and vulnerabilities.

 For each element of a documented attack surface, known weaknesses and attack patterns
11

can be used to mitigate the risks.

 The attack surface supports deployment, as it helps to identify the attack opportunities that

could require additional mitigation beyond that provided by the product.

2.2.1 The Use of Attack Surface Analysis in Different Acquisition Phases

To illustrate the way it can reduce supply chain security risk, let’s consider how attack surface

analysis could be incorporated into the phases of an acquisition. (The phases and activities are the

same as those listed in Table 1 on page 5.)

2.2.1.1 Initiation

Perform an initial supply chain security risk assessment

This activity should identify—from the acquirer’s perspective—critical aspects of the system that

could be affected by supply chain security risks such as:

 Criticality of use and information. Criticality can be a factor in attack objectives. A data store

with critical information could be a target. Use of critical functions or services could be tar-

geted to disrupt operations.

 Known supply chain risks associated with technologies or design requirements. Newer tech-

nologies, such as web services or design patterns including service-oriented architectures

(SOAs), have a short history of known attack patterns and a relatively short list of known

coding and design weaknesses compared to more mature technologies, so they may present

greater risks that should be addressed in the request for proposal (RFP).

11

 Attack patterns are “descriptions of common methods for exploiting software.” [https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/attack.html] More information on attack patterns is available at the refe-
renced URL as well as in Chapter 2 of Software Security Engineering: A Guide for Project Managers [Allen
2008].

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack.html

11 | CMU/SEI-2010-TN-016

Include supply chain security risk management as part of the RFP

 Require preliminary identification of attack surface elements. The proposal should discuss the

risks of proposed technologies (enablers), the likely targets of an attack, and the system inputs

and outputs (the channels of communications). An RFP responder could be asked to

 build attack patterns and abuse cases that reflect potential threats

 create technology-specific attack patterns

 document and update the system and software attack surface

It is difficult to verify an attack surface for a third-party product or whether attack surface

knowledge has been used effectively in developing such products, because design and devel-

opment artifacts are typically not made available to product users. Consequently, an acquisi-

tion for custom development should pay special attention to the contribution third-party com-

ponents make to the attack surface.

 Require a detailed inventory of all planned third-party software and the role of each within

the delivered solution.

 For third-party software that contributes to attack opportunities, an RFP responder should be

asked to describe

 security-related selection criteria and review processes. The selection criteria for COTS,

government off-the-shelf (GOTS), and open source software can include historical evi-

dence, independent assessments, and knowledge of the applicable development processes

used.

 how third-party software risks are mitigated.

 the security testing done for third-party software.

2.2.1.2 Development

Monitor practices for supply chain security risk management

 Testing should target the attack opportunities identified by the attack surface.

 For custom software development, maintain the attack surface documented by the developer.

 For third-party software, maintain the attack surface assessments of third-party software and

suppliers. Costs can be reduced if a central DoD organization identifies the third-party soft-

ware attack surfaces and makes its analysis available to programs using this software.

2.2.1.3 Configuration/Deployment

Assess delivered products/systems

 The attack surface can guide acceptance testing. Penetration testing informally identifies at-

tack surface components. An attack surface may be a contract deliverable, but the assessment

should consider developing one independently, particularly for commercial products. Data in-

put points in the code are good targets for fuzz testing.

 Confirm the detailed inventory of all planned third-party software and the role of each within

the delivered solution.

Configure/integrate with consideration of supply chain security risks

 Configure the system to reduce the attack surface to one that is consistent just with user re-

quirements and the available risk mitigations.

12 | CMU/SEI-2010-TN-016

The acquirer should generate an attack surface based on actual use and operational risks. An

analysis of the resulting attack surface can lead to additional installation-specific mitigations

to reduce specific risks.

Develop user guidance to help mitigate supply chain security risk

 The site system administrative and development staff should document and communicate

changes to the attack surface if currently unused features are enabled later.

2.2.1.4 Operations/Maintenance

Monitor component/supplier

 Review new releases for changes in the attack surface that can trigger needs for new mitiga-

tions.

2.3 Assess the Security Risk—Threat Modeling

The creation of an attack surface helps to focus analysis but does not identify security risks and

possible mitigations for the application software. Threat modeling and other similar risk assess-

ment techniques are a systematic approach to identify security risks in the software and rank them

based on level of concern. Threat modeling constructs a high-level application model (e.g., data

flow diagrams), a list of assets that require protection, and a list of risks. For example, a detailed

walk-through of a data flow should

 consider the deployed configuration and expected use

 identify external dependencies such as required services

 analyze the interfaces to other components (inputs and outputs)

 document security assumptions and trust boundaries (e.g., a security control point)

As Steingruebl and Peterson state, undocumented assumptions have caused significant system

failures [Steingruebl 2009]. The problem often occurs when systems with incompatible assump-

tions are composed. For example, a classic security problem with legacy systems is that they were

often designed under the assumption of operating in a trusted and isolated operating environment.

That assumption will be violated if such legacy systems are used as a back end for a web-based,

public-facing, front end. Modeling the threat using a multi-system data flow could identify such

assumption mismatches.

Consider the database usage example shown in Figure 3. Threat modeling would generate a user

scenario for submitting a query. In this case, assume a scenario where the user submits an em-

ployee ID and receives in return the name and salary of that employee. The external dependencies

include the database server. Security assumptions for the database server are that it maintains au-

thentication information, encrypts sensitive data, and maintains access logs.

13 | CMU/SEI-2010-TN-016

Figure 3: Attack Surface Example

Threat modeling then analyzes the data flow diagram as shown in Figure 3. Assume the user sub-

mits the ID value of 48983. What data is sent from the application code to the database server?

Input to the server should be a database command such as

 SELECT ID name salary FROM EMPLOYEES WHERE ID=48983

The server then returns [48983 Sally Middleton $74,210].

Given properly formatted input, the data flow will successfully execute and return the desired data

or an error if the ID is not found. Threat modeling analysis considers what could go wrong if the

input is not formatted properly. In such a case, can an attacker induce improper behavior? In this

case, the answer could be yes.

Suppose the user entered ID=48983 | 1= 1 (where | means logical “or”). If the application code

does not verify that the ID is a string of digits, the generated database command will now be

 SELECT ID name salary FROM Employees WHERE ID=48983 | 1 =1

The database server interprets this command to mean select entries where the ID is 48983 or 1

equals 1. Since 1 is always equal to 1, the selection criterion is always true, and salary informa-

tion is returned for all employees. The risk associated with this defect is high; variants of it have

been used in attacks that caused credit card data to be downloaded illegally.

A risk assessment is never complete and cannot guarantee that application code is free of security-

related defects. It is based on current knowledge. New attack techniques may exploit a defect in

code that was previously determined to be secure.

14 | CMU/SEI-2010-TN-016

The benefits of threat modeling or an equivalent risk analysis technique include the following

[Howard 2006]:

 Identifies system risks before a commitment to a detailed implementation.

 Requires development staff to review the application software architecture and design from a

security perspective.

 Supports the selection of countermeasures for the planned usage and operating environment

as defined by user scenarios, dependencies, and security assumptions.

 Contributes to the reduction of the attack surface. There are some general ways to reduce an

attack surface. The most obvious one is to review the importance of each feature. The detailed

analysis associated with threat modeling can suggest other mitigations. For example, risk can

be reduced by limiting access to the available functionality (e.g., by ensuring that code is ex-

ecuted with the minimum privileges needed to accomplish a task).

 Provides guidance for code review. The threat model developed for the system identifies the

components that require an in-depth review and the kinds of defects that might appear. There

are general design patterns such as using a canonical output format that can eliminate some of

the potential defects.

 Guides security and penetration testing. Security and penetration testing should incorporate

techniques that have been used successfully by attackers. There are commercial tools de-

signed to support such a test approach.

2.3.1 The Use of Risk Assessments in Different Acquisition Phases

There are several ways of assessing security risk [NIST 2002, Haimes 2008, Howard 2006]. We

provide a preliminary description of methods that are particularly useful to controlling software

supply chain risk at the different phases of an acquisition life cycle. We focus particularly on the

risks associated with the development and use of application code (i.e., code that interfaces direct-

ly with a user).

2.3.1.1 Initiation

Write software supply chain security risk management parts of RFP

The objective here is to require systematic analysis of the security risks associated with applica-

tion code. A risk assessment should be a requirement for the initial development of a system, but

many software acquisitions serve to integrate a new or revised component into an existing opera-

tional system. In this case, the risk assessment should focus on the resulting integrated system

rather than the component alone. For example, the assessment should consider whether security is

maintained by the integration and whether there are undocumented mismatches among the as-

sumptions associated with the added component and the existing operational environment.
12

 In

any event, a documented risk assessment is needed to provide a baseline for custom development

and for the integration of COTS, GOTS, or open source components.

12

 The likelihood of such mismatches increases with the use of COTS or GOTS software components.

15 | CMU/SEI-2010-TN-016

Select suppliers that address supply chain security risk

The successful use of a risk assessment technique such as threat modeling depends on the know-

ledge, skill, and ability of the staff and the collective experience they can draw on. This criterion

is reflected in the BSIMM study. One objective of that effort was to enable an organization to per-

form a self-assessment by comparing their practices to the collective practices of nine organiza-

tions. BSIMM identified 110 activities and created a framework to categorize them. The major

categories are Governance, Software Security Knowledge,
13

 Security Software Development Life-

Cycle Artifacts,
14

 and Deployment Practices. Using this framework, an acquisition could deter-

mine the information RFP responders should provide to show that they are prepared to deal with

software supply chain security risk, such as

 Require RFP responders to evaluate their ability to address supply chain risk by considering

the following areas (drawn from the BSIMM framework):

 continuing developer staff training that includes

 integrity of development—access controls and configuration management

 awareness of supply chain security risks

 design and coding practices that support the development of secure software

 corporate knowledge

 attack models: threat modeling, abuse cases, and technology-specific attack patterns

 security features and design: usable security patterns for major security controls

 standards and requirements: for authentication, authorization, input validation, etc.;

security standards for technologies in use; and standards for third-party software use

 Require RFP responders to consider the capabilities of their suppliers to apply appropriate

software security risk assessment and mitigation techniques. Does each supplier have access

to staff knowledgeable about the threats and mitigations associated with the requested devel-

opment? Is each supplier training its developers on recommended development practices

needed for the final product? Does the responder share software supply chain security risks

and mitigations with its suppliers, and do they share this information with their subcontrac-

tors? Do suppliers and their subcontractors provide insight into their risk assessment results?

Suppliers using security-focused development practices reduce supply chain security risk. These

practices focus on architecture analysis, code reviews, and security testing. Microsoft’s Security

Development Lifecyle [Howard 2006] includes a full spectrum of security-focused application

development practices. RFP language can encourage the use of these practices throughout the

supply chain to reduce security risk.

2.3.1.2 Development

Monitor supply chain security risk management practices

 Ensure the incorporation of attack and vulnerability knowledge gained from the risk assess-

ment into the development of application code.

13

 This is called “Intelligence” in the BSIMM.

14
 These are called “SSDL Touchpoints” in the BSIMM.

16 | CMU/SEI-2010-TN-016

 Ensure consideration of security risk assessment results in architecture design and develop-

ment.

 Ensure consideration of security risk assessment results in testing third-party supplied soft-

ware.

 Identify risks mitigated by the following:

 architecture mitigations for application code defects

 architecture mitigations for supply chain security risks associated with third-party-

developed software (subcontractors, COTS/GOTS, open source)

 Evaluate fuzz testing results using a system-specific risk assessment

 Evaluate the effectiveness of security testing applied to third-party-developed software

 Evaluate design and code reviews explicitly targeting risks identified in the risk assessment

 Evaluate effectiveness of the automated support for source code analysis (e.g., static analysis

tools) based on a risk assessment

2.3.1.3 Configuration/Deployment

Assess delivered products/systems

 The risk assessment can guide acceptance testing areas, as was suggested for attack surfaces

in Section 2.2.1.3.

Configure/integrate with consideration to supply chain security risks

 Risk assessment (e.g., threat modeling) should be done as part of the integration of the ac-

quired software with the existing operational system. Are there mismatches among design,

development, or operational assumptions that could be exploited? If a risk assessment was

done for the existing system, that analysis should be updated and documented to reflect the

changes.

 Acceptance of the product or system should include a review of the provided risk assessment

to confirm its sufficiency and accuracy.

2.3.1.4 Operations/Maintenance

Monitor component/supplier

 Risks change as attackers develop new methods. A system risk assessment reflects the risks

known at the time it was developed so it should be reviewed and updated periodically. Such a

review should be part of the operating practices of both the product developer and user organ-

ization.

2.4 Summary and Final Note

Attack surface analysis and risk assessments such as threat modeling are key techniques for re-

ducing software supply chain security risk. However, these analyses cannot be considered static

artifacts. Attackers can introduce new techniques that are applicable to software that was thought

to be secure. The attack surface and associated threat models need to be reviewed periodically.

The reviews need to be more frequent for new technologies because these technologies have a

relatively short history of exploits that are available to guide threat modeling and other security

risk assessment techniques.

17 | CMU/SEI-2010-TN-016

3 An Assurance Case Reference Model for Software Supply

Chain Security Risk

3.1 Introduction

An assurance case is used to argue that available evidence supports a given claim. In this report,

the claim of interest is that software supply chain security risk has been reduced, and the evidence

is the collection of information relevant to showing that certain risk mitigations have been imple-

mented effectively. The case shown here is our initial attempt to integrate the techniques and con-

cepts discussed in Section 2.

The specific technique we use is the goal-structured assurance case. The case requires a goal (or

claim) such as “The system is secure,” a set of evidence such as test results, and a detailed argu-

ment linking the evidence to the claim. Without an argument as to why the test results support the

claim of security, an interested party could have difficulty seeing its relevance or sufficiency.

With only a detailed argument depending on test results to show that a system was secure, but in

the absence of those results, again, it would be difficult to establish the system’s security.

In our case, the top-level claim is “Supply chain security risks for product <P> have been reduced

ALARP
15

 (as low as is reasonably practicable).” From that claim flows an argument that supports

the top-level claim. The argument consists of one or more subsidiary claims that, taken together,

make the top-level claim believable. These lower level claims are themselves supported by addi-

tional claims until finally a subclaim is to be believed because evidence exists that clearly shows

it to be true.

To develop the assurance case and make it reviewable by others, we use the Goal Structuring No-

tation (GSN) developed by Tim Kelly and his colleagues at the University of York in the United

Kingdom [Kelly 1998]. This notation is ideally suited for explaining what information is needed

and why it is needed to show that software supply chain security risks have been adequately ad-

dressed. Figure 4 shows a short assurance case documented in GSN. In it, the top-level claim is

labeled C1. The argument consists of the subclaims, C2, C3, and C4. Claims C2 and C4 are sup-

ported by evidence, Ev1, Ev2, and Ev3.

Claims are phrased as predicates; they are either true or false. Evidence is stated as noun phrases.

Other notations shown in the sample are

 the diamond under node C3, indicating that the claim requires further development

 the triangle under node Ev3, indicating that the evidence is parameterized and needs to be

instantiated in an actual case

 the parallelogram, labeled S1, which explains how the argument is structured. (S stands for

strategy.)

15

 ALARP is a principle used in safety cases. See http://en.wikipedia.org/wiki/ALARP.

http://en.wikipedia.org/wiki/ALARP

18 | CMU/SEI-2010-TN-016

 a rounded rectangle labeled Cx1; this node provides additional contextual information about

the node to which it is attached

 an oval with an A under it labeled Assumption; this node is used to state assumptions not be-

ing further addressed by the case

Figure 4: Assurance Case Structure

The assurance case for supply chain security risk reduction (see Figure 5) starts with the claim

“Supply chain security risks for product <P> have been reduced ALARP.” To show that this

claim is true, the argument addresses four largely independent concerns introduced in Section 1.2:

 supplier capability: ensuring that a supplier has good security development and management

practices in place throughout the life cycle (addressed in claim C1.1)

S 1

Argumentation approach

for showing that claim

C1 has been met

C 1

A property of

interest is

valid

Cx 1

Context

information for

claim C1
A

A 1

Assumptions used

when making the

claim

Ev 3

Evidence

supporting

argument 3 for

property <x> (to

be instantiated)

C 3

Claim for argument 2

is valid (to be further

developed)

C 4

Claim for

argument 3 is

valid

Ev 1

Evidence

supporting

argument

1

C 2

Claim for argument 1

is valid (supported by 2

pieces of evidence)

Ev2

Evidence

supporting

argument

1

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes only

19 | CMU/SEI-2010-TN-016

 product security: assessing a delivered product’s potential for security compromises and de-

termining critical risk mitigation requirements (addressed in claim C1.2)

 product logistics: the methods used to deliver the product to its user and how these methods

guard against the introduction of malware while in transit (addressed in claim C1.3)

 operational product control: ensuring that the appropriate configuration and monitoring con-

trols remain in place as the product and use evolve over time (addressed in claim C1.4)

The start of the assurance case shown below reflects these four concerns. We claim that if all four

concerns are addressed satisfactorily, the claim of supply chain security risk reduction is valid.

Figure 5: Top-Level Assurance Case

3.2 The Level 1 Supplier Follows Practices that Reduce Supply Chain Security Risk

Figure 6 expands claim C1.1 stating that Level 1 supplier <S> follows practices that reduce

supply chain security risk. We argue that the claim is valid if the supplier uses

 acceptable governance policies and practices that support security (addressed in claim

C1.1.1.1)

Cx 1a

Products can be supplied

by 1) an organization's

internal development

organization, 2) an external

supplier, or 3) an external

supplier's suppliers

Cx 1b

Supplier: an organization involved

in providing a product or system to

another organization (includes

distributors, transporters, and

storage facilities as well as the

organization directly responsible for

creating product or system content)

C 1.4

The product is used in

a secure manner

C 1.1

Level 1 supplier <S>

follows practices that

reduce supply chain

risk

C 1.2

Delivered/updated

product is acceptably

secure

C 1.3

Methods of transmitting the

product to its user guard

against introduction of

malware while in transit

C 1

Supply chain security risks

for product <P> have been

reduced ALARP

Cx 1d

Supply chain security risk: security

risk introduced through the supply

chain, i.e., security risk introduced

by a supplier who either

contributes to the content of a

product or system, or who has the

opportunity to modify such content

A

A 1a

Acquiring organization understands

importance of security, understands

supply chain risks and impacts, and

understands how to translate the

value of security into cost, schedule,

and contractual obligations

Cx 1c

Security risk: the risk that an

unauthorized party changes

the behavior of a product or

system in a way that

adversely affects its security

properties

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes only
Supplier Capability Product Security Product Logistics Operational Product Control

20 | CMU/SEI-2010-TN-016

 effective processes supporting the development of secure products (addressed in claim

C1.1.1.2)

 good practices for responding to customer security problems (addressed in claim C1.1.1.3)

 good policies and practices for evaluating the level of supply chain security risk introduced by

relying on its suppliers (addressed in claim C1.1.1.4)

Figure 6: Assurance Case for Supplier Practices

Claim C1.1.1.1 addresses the governance practices that are called out in the BSIMM. The

BSIMM is particularly concerned that the organization has good policies and practices in place to

ensure development site security and that employees are well trained in application software secu-

rity engineering practices. The kind of evidence that this argument depends on includes training

materials and confirmation that employees have indeed been trained. We have not documented

C 1.1.1.1

Supplier has

governance policies and

practices that support

security

Ev 1.1.1.1.2.2.1

Revision

dates for

training

materials

C 1.1.1.1.2.3

Appropriate

experts teach

the classes

Ev 1.1.1.1.2.3.1

Lists of

acceptable

credentials

for

instructors

Ev 1.1.1.1.2.3.2

Names of

instructors and

their

credentials

C 1.1.1.1.1

Supplier has good policies

and practices to ensure

development site security

C 1.1.1.1.2

Supplier employees

are educated as to

security engineering

practices

Cx 1.1.1.1.1a

These are the

standard set of good

practices for the

physical development

environment

Cx 1.1.1a

The argument is derived

from Howard paper

Cx 1.1a

Delivers products that

present minimal

opportunities for

unauthorized changes

S 1.1.1

Argue over practices

leading to reduced

supply chain risk

C 1.1

Level 1 supplier <S>

follows practices that

reduce supply chain

risk

Ev 1.1.1.3.1

Description of

process for

responding to

security

problems

C 1.1.1.4

The supplier has good

policies and practices for

evaluating the supply chain

risks introduced by its

suppliers

Ev 1.1.1.3.2

Description of

the defined

point of contact

for failure/bug

reports

C 1.1.1.3

Supplier has good

practices for customer

security problem

response

Cx 1.1.1.4a

This is a

recursive use of

this case

C 1.1.1.2

Supplier has

effective processes

in place that support

development of

secure products

Ev 1.1.1.1.2.1.1

Documentation for

each engineer of

training received

and when

trained/retrained

C 1.1.1.1.2.1

All engineers are

educated/trained

C 1.1.1.1.2.2

Training is

updated sufficiently

frequently

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes only

21 | CMU/SEI-2010-TN-016

criteria for evaluating the quality of the training materials or the nature of a satisfactory confirma-

tion that employees have been trained, in part because there is no general agreement about what

such criteria should be and in part to simplify the presentation of the case. In the absence of expli-

cit criteria, reviewers will have to use their own judgment as to whether the evidence is of suffi-

cient quality to support a specific claim.

Next, we consider claims C1.1.1.3 and C1.1.1.4. The first of these claims requires evidence that

the supplier has a process and a point of contact for dealing with customer-reported security is-

sues. Claim C1.1.1.4 requires evidence that the supplier has good practices for evaluating the

supply chain security risks introduced by any suppliers that it contracts with. This would involve a

recursive invocation of this assurance case on that supplier.

The argument shown in Figure 7 supports claim C1.1.1.2 and is quite a bit more detailed than

those for the claims just discussed. Claim C1.1.1.2 says that the supplier has effective processes in

place that support the development of secure products. The argument showing this to be valid re-

quires the supplier to

 have design practices that make the product more robust against security threats (claim

C1.1.1.2.1)

 follow suitable security coding practices (claim C1.1.1.2.2)

 perform good testing and V and V (validation and verification) (claim C1.1.1.2.3)

 have a process for documenting security aspects of its products (claim C1.1.1.2.4)

Showing that the supplier has design practices that make the product more robust against security

threats (C.1.1.1.2.1) requires that the supplier have documented design guidelines that show that

appropriate security design principles are used. It further requires that threat modeling (Section

2.3) techniques be applied to the design.

Showing that the supplier follows suitable security coding practices (claim C1.1.1.2.2) involves

detailing the compilers and other tools used to develop the software to ensure that they are of suit-

able quality. High-quality compilers have built-in checks to avoid common mistakes that may

lead to insecure code. Disabling these checks greatly reduces the power of these compilers, so the

assurance case requires that the appropriate checks be enabled. Suitable security coding practices

also require the use of static analysis tools throughout development, and thus the case requires

evidence of their use and efficacy. Other important indicators of suitable coding practices are evi-

dence that dangerous application programming interfaces (APIs) are avoided and that the supplier

employs encryption when protected information could be intercepted.

This portion of the case applies mainly to software developed in-house or commissioned through

a supplier. For COTS/GOTS components as well as for free and open source software (F/OSS),

one can attempt to obtain information about supplier development practices, but much of the ne-

cessary data will simply be unavailable. In such cases, the software acquirer can, at the very least,

attempt its own V and V activities. In this instance, penetration testing (claim C1.1.1.2.3.1) and

fuzz testing (claim C1.1.1.2.3.2) can be extremely valuable.

22 | CMU/SEI-2010-TN-016

Figure 7: Supplier Practices Supporting Development of Secure Products

Ev 1.1.1.2.4.1

Examples of

documentation

for products

C 1.1.1.2.4

Supplier has a

process for

documenting security

aspects of products

Ev 1.1.1.2.3.1.1

Penetration

testing

procedures

C 1.1.1.2.3.1

Supplier

performs

appropriate

penetration

testing

Ev

1.1.1.2.3.2.1

Fuzz

testing

procedures

Ev 1.1.1.2.1.1.1

Documented

design

guidelines

C 1.1.1.2.1.2

Appropriate threat

modeling techniques

are applied to the

design

Ev 1.1.1.2.1.2.1

List of

responses to

the "Top 25

CWE"

Ev 1.1.1.2.1.2.2

% of attack

patterns

appropriate to the

design that are

included from the

threat model

(CAPEC)

C 1.1.1.2.3.2

Supplier performs

appropriate fuzz testing

based upon protocol or

input field

C 1.1.1.2.3

Supplier does

good testing and V

and V

C 1.1.1.2.1.1

Appropriate

security design

principles are

used

Ev 1.1.1.2.3.1.2

Penetration

testing

results

Ev

1.1.1.2.3.2.2

Fuzz

testing

results

C 1.1.1.2.2.2

Appropriate built-in

compiler checks

are enabled and

enforced

C 1.1.1.2.1

Supplier's design

practices make the

product more robust

against security

threats

C 1.1.1.2.2

Supplier

follows

suitable

security

coding

practices

C 1.1.1.2.2.1

Supplier uses

high quality

compilers

Ev 1.1.1.2.2.1.1

Listing of

approved

compilers

Ev 1.1.1.2.2.1.2

Listing of the

compilers

being used

Ev 1.1.1.2.2.2.1

Description

of desirable

checks

Ev 1.1.1.2.2.2.2

Audit showing

checks are

enabled and

enforced

C 1.1.1.2.2.3

Static analysis tools with

appropriate vulnerability

coverage are applied at

appropriate times

throughout development

Ev 1.1.1.2.2.3.1

% of code (in

current

configuration)

covered by

static analysis

tools

Ev 1.1.1.2.2.3.2

% of CWE

covered by

static analysis

tools

C 1.1.1.2.2.4

Supplier bans and

enforces the ban on the

use of dangerous APIs

Ev 1.1.1.2.2.4.1

List of

dangerous

APIs

Ev 1.1.1.2.2.4.2

Documentation

and audit

results showing

usage is

detected and

reviewed

C 1.1.1.2.2.5

Supplier has

requirements for the

use of encryption

when confidentiality

is required

Ev 1.1.1.2.2.5.1

Documented

guidelines for

use of

encryption

C 1.1.1.2

Supplier has

effective processes

in place that support

development of

secure products

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes only

23 | CMU/SEI-2010-TN-016

3.3 The Delivered/Updated Product Is Acceptably Secure

Figure 8: The Delivered/Updated Product Is Acceptably Secure

Figure 8 expands claim C1.2. This claim states that the delivered/updated product is acceptably

secure. We argue that the claim is valid if

 The attack surface of the product is minimized (claim C1.2.1).

 Security risks associated with the remaining exploitable features are mitigated (claim C1.2.2).

 An independent evaluation demonstrates acceptable security of the delivered product (claim

C1.2.3, not further developed here).

Showing that claim C1.2.1 is valid requires providing evidence that the potential attack surfaces

(as discussed in Section 2.2) have been determined and minimized. Showing that claim C1.2.2 is

valid requires a detailed vulnerability assessment with a discussion of mitigations.

As in Section 3.2, the nature of the product being supplied plays a big factor in determining exact-

ly what “acceptably secure” means. For a commissioned system, there should be complete visibil-

ity of all the required evidence. For COTS/GOTS components and F/OSS, the available evidence

will probably be more opaque. However, even in this case, the supplier should be required to doc-

ument what might affect the shape and size of the attack surface. For instance, the product may

come preconfigured with open network ports and default passwords. They must be documented so

that unused ports can be closed and default passwords can be changed to further minimize the

attack surface.

3.4 Methods of Transmitting the Product

The methods used to deliver the product to its user guard against the introduction of malware in

transit (claim C1.3 below, not further developed here; see Figure 9). This claim corresponds to the

“product logistics” area mentioned in Section 1.2.

C 1.2.1

The attack surface of

the product is

minimized

C 1.2.3

Independent evaluation

demonstrates acceptable

security of the delivered

product

C 1.2.2

Security risks

associated with

remaining exploitable

features are mitigated

C 1.2

Delivered/updated

product is acceptably

secure

A

A 1.2a

The organization that is

incorporating the product into a

system understands importance of

security and understands how to

translate vendor evidence into risks

associated with the product

Ev 1.2.1.1

Description of

the potential

attack surface

(maximal

functionality)

Ev 1.2.1.2

Attack surface

of delivered

product

Ev 1.2.1.3

Evaluation via a

defined process

shows minimal

attack surface

Ev 1.2.2.1

List of

identified

vulnerabilities

and their

disposition

Ev 1.2.2.2

Vulnerability

assessment

results

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes only

24 | CMU/SEI-2010-TN-016

Figure 9: Methods of Transmitting the Product to Its User Guard Against Introduction of Malware While

in Transit

Figure 10: The Product Is Used in a Secure Manner

Cx 1.3b

Examples of mitigations: use

of signed, encrypted code

segments, management of

keys to avoid compromise,

media is free of viruses, etc.

Cx 1.3a

Hazard: third party

interception and

tampering with code

while in transit

C 1.3

Methods of transmitting the

product to its user guard

against introduction of

malware while in transit

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes

only

C 1.4.1.3

Patches are

applied in a

timely manner

A

A 1.4.1a

Supplier security

assumptions are valid

when the product is

incorporated into a

system

Ev 1.4.1.2.1.1

Description of

potential input

vulnerabilities

C 1.4.1.2.2

Outputs are monitored

to ensure syntactic

correctness and

consistency with

policies for exporting

data

C 1.4.1.1

Changes to the attack

surface (due to operational

requirements) balance risk

of compromise vs.

operational effectiveness

Ev 1.4.1.1.1

Operational requirements

analysis showing how the

product's attack surface

should be adjusted (e.g.,

deciding what ports to

open, vulnerabilities made

possible by this action,

countermeasures to take,

and residual risk impact)

Ev 1.4.1.3.1

Patch logs

C 1.4.2.1

The operational

environment is

monitored for

unexpected events

Ev 1.4.1.1.1.1

List of places

where product is

used, last product

update date, and

date list was last

audited

C 1.4.1.2.1

External inputs are

validated

Ev 1.4.1.2.1.2

Description and

analysis of

validation activity

showing input

vulnerabilities are

controlled

C 1.4.1.1.1

Places where the

product is used are

known to those

responsible for product

maintenance

Ev 1.4.1.2.2.1

Description of

monitoring

method and

activity

C 1.4.1.2

Security risks are

monitored and

managed as product

usage changes

A

A 1.4a

The organization that is using the

product understands their operational

environment and the security controls

in place and how this product will fit

within those controls

C 1.4

The product is used in

a secure manner

C 1.4.1

The configuration of the

product maintains its

security properties

C 1.4.2

The product is

operated in a

secure manner

Cx 1.4a

An otherwise secure

product can be used in a

manner that degrades

security

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes only

25 | CMU/SEI-2010-TN-016

3.5 The Product Is Used in a Secure Manner

All the good design and supplier security practices in the world won’t protect against misuse of

the delivered product. If the product is shipped with a default, well-known password which is not

routinely changed at installation, an easily exploited vulnerability exists. Claim C1.4, expanded in

Figure 10, addresses this point. It argues that the product is used in a secure manner if it is

 configured to maintain its security properties (claim C1.4.1)

 operated in a secure manner (claim C1.4.2)

Claim C1.4.2 involves monitoring the environment for unexpected events and is not further de-

veloped here. Claim C1.4.1 is more complex and involves dealing with security issues that arise

during operation of the product. Changes in operational requirements, in the way that the product

is used, and to the product itself as patches are applied—all of these require analysis and monitor-

ing to ensure ongoing security.

As in the previous two sections, COTS/GOTS components and F/OSS must be considered sepa-

rately from commissioned systems. Usage changes, for example, can lead to the need to open ad-

ditional network ports and may allow others to be closed leading to changes in the size and shape

of the attack surface. Especially for COTS/GOTS software and F/OSS, this may lead to the need

for additional validation and verification activities as well.

3.6 Putting It All Together

Figure 11 shows the entire supply chain security risk assurance case and how the pieces previous-

ly discussed all fit together.

26 | CMU/SEI-2010-TN-016

Figure 11: Putting the Assurance Case Together

27 | CMU/SEI-2010-TN-016

3.7 Evaluating the Risk

Figure 12: Evaluating the Risk

Figure 12 (a fragment of the overall assurance case) illustrates one way of using the assurance

case to evaluate the overall supply chain security risk. As evaluation proceeds, it may be impossi-

ble to locate some evidence, other evidence may be judged as imperfect, and still other evidence

may be judged as perfect. Those evaluating the risk can color code the evidence according to their

judgment. Nonexistent or poor evidence could be colored red. Solid evidence could be colored

green. Anything falling between these two extremes could be colored yellow.

Coloring the claims supported by the evidence requires additional judgment on the part of the

evaluator. Obviously if all the supporting evidence (or subclaims) have been colored green, it is

reasonable to color the claim green, and if all the supporting evidence (or subclaims) have been

colored red, the claim should be colored red. In the more usual case, the evidence and/or the sub-

claims will not be uniformly red or green. In such a case, the evaluator will have to decide the

relative importance of the subnodes and determine an appropriate color for the blend—often yel-

low or red, but seldom green. Eventually the top node—“Level 1 supplier <S> follows practices

that reduce supply chain security risk”—is colored with the overall evaluation of supply chain risk

for the supplier.

Ev 1.1.1.2.2.5.1

Documented

guidelines for

use of

encryption

Ev 1.1.1.2.2.1.1

Listing of

approved

compilers

Ev 1.1.1.2.2.2.1

Description

of desirable

checks

Ev 1.1.1.2.2.1.2

Listing of the

compilers

being used

C 1.1.1.2.2.1

Supplier uses

high quality

compilers

C 1.1.1.2.2.2

Appropriate built-in

compiler checks

are enabled and

enforced

Ev 1.1.1.2.2.2.2

Audit showing

checks are

enabled and

enforced

Ev 1.1.1.2.2.3.2

% of CWE

covered by

static analysis

tools

Ev 1.1.1.2.2.4.2

Documentation

and audit

results showing

usage is

detected and

reviewed

Ev 1.1.1.2.2.4.1

List of

dangerous

APIs

C 1.1.1.2.2.4

Supplier bans and

enforces the ban on the

use of dangerous APIs

C 1.1.1.2.2.5

Supplier has

requirements for the

use of encryption

when confidentiality

is required

Ev 1.1.1.2.2.3.1

% of code (in

current

configuration)

covered by

static analysis

tools

C 1.1.1.2.2.3

Static analysis tools with

appropriate vulnerability

coverage are applied

and appropriate times

throughout development

C 1.1.1.2.2

Supplier

follows

suitable

security

coding

practices

Created w ith ASCE Educational licence - valid for non-commercial teaching and research purposes only

28 | CMU/SEI-2010-TN-016

4 Supply Chain Security Risk Review of a Current Program

Our team performed a preliminary review of the supply chain security risk for a selected DoD

program using the assurance case reference model. The program selected for review is in the de-

velopment phase of the acquisition life cycle. Our review was limited, since program funding was

not available for the contractors to meet with us and most of the documents were not considered

releasable to external parties. We were able to review the Software Development Plan (SDP) and

conduct a group interview with key government members of the program office. Note: All quotes

in this section are taken from the SDP.

4.1 Program Supply Chain

The supply chain structure for the program selected for review consists of a prime contractor that

is focused on system and network management. Application and information assurance
16

 software

is provided by a major subcontractor to the prime. Three additional development companies are

addressing specialized software needs and are subcontractors to the major software subcontractor.

“The … Program deployment software consists of commercial off-the-shelf software, Govern-

ment off-the-shelf software, Non-developmental software from Independent Development

(ID)/Independent Research and Development (IRAD)s, and Free and Open source Software.”

The COTS products were selected by the contractors as part of their initial response to the RFP.

The contract is cost-plus and based on functionality to address the ORD. The architecture (ser-

vice-oriented) was also part of the contractor bid. A great deal of the acquisition is outside of visi-

bility of the DoD and the prime contractor. Exposure to the functionality is provided through pe-

riodic formal reviews specified in the SDP:

 System Requirements Review (SRR)

 System Design Review (SDR)

 Software Specifications Review (SSR)

 Preliminary Design Review (PDR)

 Critical Design Review (CDR)

 Test Readiness Review (TRR)

4.2 Evaluation of the Program’s Supply Chain Security Risk

The supply chain assurance case is in four parts: (1) supplier capability, (2) product security, (3)

product logistics, and (4) operational product control. In the remainder of this section, we present

the program information provided for each of these parts.

16

 Information assurance software is software controlling access to data (e.g., software controlling the movement
of data from higher to lower classification levels or software that mediates access via Common Access Card
(CAC) readers).

29 | CMU/SEI-2010-TN-016

4.2.1 Supplier Capability

Because the project is already in development, the contractor selection was complete, and we

could not view information related to how that selection was made to identify considerations for

supply chain security risk. However, we asked about supplier capabilities for the production of

software with minimal security defects. The answer we were given described how the supplier

was handling classified information and had no bearing on its ability to produce secure code.

Personnel are required to complete background checks and clearances to work in a top-secret en-

vironment. Developers are exposed to security awareness material, and an annual security briefing

is conducted by security staff.

Security solutions are identified for system access and authentication but do not extend into the

application software. The standard DoD solutions using public key infrastructure (PKI), certifi-

cates, role-based access controls, and intrusion-detection systems are included in the software ar-

chitecture requirements. These can be supported either successfully or inappropriately by the

software, depending on the skill of the developers. Security requirements mandate the use of ap-

plication code signing, which at least provides a level of accountability if defects are appropriately

tracked back to the source.

Based on information from the SDP, the skill focus is on a software developer’s ability to create

new software. The following skills, which cover a typical list of programming capabilities, are

required at various levels of experience, but it is not clear that knowledge of secure use of these

tools beyond password control is expected: XML, C, C++, Java, CORBA, UNIX, ClearCase,

Windows, Linux and Solaris, network administration, TCP/IP, X/Motif, DII COE, Simple Net-

work Management Protocol (SNMP), Agent Technology, 3D(LDAP)v3 interfaces, OOA/OOD,

UML, and COTS Integration. Without proper training, programmers using these tools can create

code that allows all the common software attacks identified by the Common Weakness Enumera-

tion. However, there are no widely accepted standards specifying what constitutes “proper” train-

ing, so training on appropriate coding techniques is often not considered to be a required part of a

supplier’s capabilities. Although program coding standards are specified in the SDP to require use

of Java, C, and C++, they do not include any consideration of secure coding standards for these

languages.
17

In addition, the subcontractors are building code using code-generation tools (e.g., Spring Frame-

work) that will generate insecure code unless programmers have been trained to avoid these prob-

lems. The use of code-generation technology can increase supply chain security risk if security

weaknesses are not properly addressed.

4.2.2 Product Security

There were no indications that software or supply chain security was considered beyond specific

system requirements (PKI, certificates, role-based access controls, and intrusion-detection sys-

tems); for example, there were no requirements for using secure software development life-cycle

17

 For more information, go to http://www.cert.org/secure-coding/.

http://www.cert.org/secure-coding/

30 | CMU/SEI-2010-TN-016

practices. Interviews indicated that the lack of emphasis on secure software development practices

in current security regulations means such practices were not considered contractual requirements.

Interviews also indicate that a great deal of quality-of-service monitoring (for a SOA environ-

ment) is built into the infrastructure, and this monitoring can support security. Although there is

extensive monitoring to ensure that software is well behaved, there was no evidence that the mon-

itoring was designed to address security vulnerabilities identified by an attack surface analysis or

by threat modeling.

Development is to apply “software engineering principles such as

1. isolation of interfaces to minimize data visibility and maximize information hiding

2. isolation of performance-sensitive software

3. encapsulation of COTS components

4. encapsulation of hardware and change points”

However, COTS tools used in development to generate code and COTS execution software that

makes up the SOA infrastructure cannot be readily isolated. Many of these tools have security

vulnerabilities. There are no formal acceptance criteria in place for COTS components. Control of

patches and COTS product refresh is the responsibility of the contractor until the system is

fielded, but there is no indication that a continuing review of potential security or supply chain

concerns is required. For example, the impact of a vulnerability on an isolated service will be

quite different from one that is heavily used. As a result, if usage changes or the service becomes

more tightly integrated with the rest of the system, a new attack surface analysis and threat model

should be done. There will be still greater concern for vulnerabilities that are within the SOA in-

frastructure on which all services rely. Planning for control of these varying levels of criticality

was not evident.

“Testing shall be designed to not only show that all requirements are reflected in the software’s

behavior but also to try to demonstrate that the software’s behavior is completely reflected in the

design and requirements (no undocumented behavior).” The use of the term try does not provide a

strong indicator of the level of success expected. That, coupled with limitations in encapsulation,

indicates the potential for a very broad attack surface.

Because the prime contractor and subcontractors compete directly on other government contracts,

exposure of identified problems through the supply chain has been problematic. Each supplier

will inform the government but will not share that information with potential competitors. Though

a formal reporting mechanism for problems has been formulated in the SDP, it is unclear how

well this is being used based on the relationships of the contract participants.

The reviews are conducted by Quality Control, an independent auditing capability with a “sepa-

rate reporting structure outside of the … program and engineering management structure.” Theo-

retically this should provide the best level of information. However, interviews indicate that Qual-

ity Control personnel do not have the knowledge to cover everything, and additional outside

support is being sought, although cost is a limiting factor.

31 | CMU/SEI-2010-TN-016

4.2.3 Product Logistics

An informal control process is in place for all software elements during development, and all ven-

dors share a central repository and other development tools. A formal control process under the

control of a build coordinator is defined for the baselines of all products that move into the Sys-

tem Testing Phase. No information was provided about ensuring the integrity of transmitted code.

For limited user testing (LUT), the prime contractor hired a firm to formally control distribution

of the software products from its environment to the specified user platforms and back. No infor-

mation was available about the security practices used in distributing this software.

4.2.4 Operational Product Control

Control of security patches and COTS product refresh passes to post-deployment support beyond

implementation. Patches are applied as soon as they are tested. Maintaining an effective SOA en-

vironment with minimum security risk that is highly dependent on COTS products customized for

the SOA environment will present supply chain security risks beyond the normal vulnerability

management concerns. No information was provided to show that these problems are being con-

sidered.

License management is carefully controlled, and control is transferred to the government at opera-

tional implementation. These licenses provide the government with access to support from the

vendor, which includes security patches. Patch management processes were not yet defined.

Up to seven kinds of logging are available, but performance considerations must be factored into

the use of each kind. Decisions of what is sufficient are still to be established. In addition, use of

the logs will require some level of responsive monitoring that will be difficult, if not impossible,

to do manually. The extent to which logging will support security reviews was unclear.

The fielded system is budgeted for five-year replacement of infrastructure components instead of

the usual 20 years, which provides some protection against security deterioration. But even if

patched, old versions of hardware and software frequently carry defects that are never fixed.

4.3 Review Conclusions

As a federally funded research and development center, the Carnegie Mellon
®

 Software Engineer-

ing Institute has reviewed many DoD programs. Our review of this program showed that it was

typical in its approach to software security and software supply chain security risk management.

The DoD has focused on infrastructure security protections such as password-based access con-

trols to prevent intrusion and has not developed regulations to mitigate security defects in applica-

tion software. As systems become highly interoperable, the protection level provided by infra-

structure security mechanisms diminishes. Without effective management, the software supply

chain further increases opportunity for the introduction of defects that increase the risk of system

compromise.

®
 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

32 | CMU/SEI-2010-TN-016

The lack of appropriate contractual requirements makes it difficult for a program office to deter-

mine whether key supply chain security risk management practices are being followed. For exam-

ple, assurance that application programmers are trained in secure coding and design practices will

not normally be provided unless this is a requirement of the contract, and neither will information

showing whether a supplier is following practices such as those suggested by the build-security-in

maturity model or the security development life-cycle model. Furthermore, acquisition practices

are currently weak in assuring that deployment practices (such as managing a deployed system’s

configuration to reduce its attack surface) and operational practices (such as preparing revised

attack surface analyses and threat models) are adequate to maintain security against supply chain

security risks.

33 | CMU/SEI-2010-TN-016

5 Summary

Software supply chain security risks are only beginning to be recognized and addressed in DoD

acquisitions for several reasons:

 The DoD has focused on infrastructure defenses against intrusions (i.e., firewalls, authentica-

tion mechanisms, etc.) and has not fully recognized the security risks posed by application

software built on top of these mechanisms.

 Practices for defending against software supply chain security risks are relatively new and

evolving, and they affect every phase of the acquisition life cycle.

To help the DoD develop and support better practices for mitigating software supply chain securi-

ty risks, we examined risks and mitigation actions associated with each phase of an acquisition’s

life cycle. In particular, we noted that suppliers must be properly trained in software design, cod-

ing, and testing practices that address security vulnerabilities arising in application software and

that program offices must monitor the extent to which these practices are actually used on specific

developments. In addition, supply chain risk extends into a system’s operational phase—at the

minimum, suppliers and operational personnel need to provide responses as new threats are dis-

covered and as new attack patterns arise; operational personnel also need to manage patches and

the deployed system’s configuration to ensure that no insecurities are introduced, either in the

patching process or by improperly modifying configuration parameters.

We provided an initial version of an assurance case reference model describing the evidence

needed to support claims that supply chain security risks have been adequately addressed

throughout the acquisition life cycle. The reference model reflects our focus on two key strategies

for controlling security risk: (1) identifying and monitoring a system’s attack surface and (2) de-

veloping and maintaining a threat model. An implementation of these strategies requires different

actions at different phases of the acquisition life cycle, and these differences are reflected in the

assurance case reference model. Further work is needed to extend the model (e.g., to address the

adequacy of supply chain security requirements) and to validate its usefulness.

Despite its preliminary state, the reference model served to guide our analysis of a specific DoD

program. However, since the program was only in its development phase, the full scope of the

model could not be used. Nevertheless, the structure of the assurance case provided a reasonable

structure for interviews with program subject matter experts. By focusing on the specific areas of

supplier capability, product security, product logistics, and operational product control, a broad

range of program practices was considered in relationship to supply chain security risk.

34 | CMU/SEI-2010-TN-016

References

[Allen 2008]

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R. Software Security Engineer-

ing: A Guide for Project Managers. Boston, MA: Addison-Wesley, 2008.

[Codenomicon 2009]

Codenomicon. Codenomicon DEFENSICS for XML Finds Multiple Critical Security Issues in

XML Libraries. http://www.codenomicon.com/news/press-releases/2009-08-05.shtml (August 5,

2009).

[Haimes 2008]

Haimes, Y.Y. Risk Modeling, Assessment, and Management, 3rd Edition. John Wiley & Sons,

2008.

[Howard 2003a]

Howard, Michael. “Fending Off Future Attacks by Reducing Attack Surface.”

http://msdn.microsoft.com/en-us/library/ms972812.aspx (2003).

[Howard 2003b]

Howard, Michael, Pincus, Jon, & Wing, Jeannette. Measuring Relative Attack Surfaces.

http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf (2003).

[Howard 2006]

Howard, Michael & Lipner, Steve. The Security Development Lifecycle. Microsoft Press, 2006.

[Kelly 1998]

Kelly, Timothy Patrick. “Arguing Safety—A Systematic Approach to Safety Case Management.”

PhD diss., University of York, Department of Computer Science, 1998.

[McGraw 2009]

McGraw, Gary, Chess, Brian, & Migues, Sammy. The Building Security in Maturity Model.

http://www.bsi-mm.com/ (2009).

[MITRE 2009a]

The MITRE Corporation. CWE-20: Improper Input Validation.

http://cwe.mitre.org/data/definitions/20.html (2009).

[MITRE 2009b]

The MITRE Corporation. 2009 CWE/SANS Top 25 Most Dangerous Programming Errors.

http://cwe.mitre.org/top25/index.html (2009).

http://www.codenomicon.com/news/press-releases/2009-08-05.shtml
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure02132003.asp
http://msdn.microsoft.com/en-us/library/ms972812.aspx
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf
http://www.bsi-mm.com/
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/top25/index.html

35 | CMU/SEI-2010-TN-016

[NIST 2002]

National Institute of Standards and Technology. Risk Management Guide for Information Tech-

nology Systems. Special Publication 800-30, July 2002,

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf.

[OWASP 2009]

Open Web Applications Security Project. Software Assurance Maturity Model.

http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model (2009).

[SAPPWG 2008]

Software Assurance Processes and Practices Working Group. Process Reference Model For As-

surance Mapping To CMMI-DEV V1.2. https://buildsecurityin.us-

cert.gov/swa/downloads/PRM_for_Assurance_to_CMMI.pdf (June 23, 2008).

[Simpson 2008]

Simpson, Stacy, ed. Fundamental Practices for Secure Software Development: A Guide to the

Most Effective Secure Development Practices in Use Today.

http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf (2008).

[Simpson 2009]

Simpson, Stacy, ed. The Software Supply Chain Integrity Framework: Defining Risks and Re-

sponsibilities for Securing Software in the Global Supply Chain.

http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf (2009).

[Steingruebl 2009]

Steingruebl, Andy & Peterson, Gunnar. “Software Assumptions Lead to Preventable Errors.”

IEEE Security & Privacy 7, 4 (July 2009): 84-87.

[Swiderski 2004]

Swiderski, Frank & Snyder, Window. Threat Modeling. Microsoft Press, 2004.

[Wikipedia 2009a]

Wikipedia. Supply Chain. http://en.wikipedia.org/wiki/Supply_chain (2009).

[Wikipedia 2009b]

Wikipedia. Supply Chain Risk Management.

http://en.wikipedia.org/wiki/Supply_Chain_Risk_Management (2009).

[Wikipedia 2009c]

Wikipedia. Information Security. http://en.wikipedia.org/wiki/Information_security (2009).

http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
https://buildsecurityin.us-cert.gov/swa/downloads/PRM_for_Assurance_to_CMMI.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/PRM_for_Assurance_to_CMMI.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
http://en.wikipedia.org/wiki/Supply_chain
http://en.wikipedia.org/wiki/Supply_Chain_Risk_Management
http://en.wikipedia.org/wiki/Information_security
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

May 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Evaluating and Mitigating Software Supply Chain Security Risks

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Robert J. Ellison, John B. Goodenough, Charles B. Weinstock, Carol Woody

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TN-016

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Department of Defense (DoD) is concerned that security vulnerabilities could be inserted into software that has been developed

outside of the DoD’s supervision or control. This report presents an initial analysis of how to evaluate and mitigate the risk that such un-

authorized insertions have been made. The analysis is structured in terms of actions that should be taken in each phase of the DoD ac-

quisition life cycle.

14. SUBJECT TERMS

Software supply chain security risk, assurance case, software assurance

15. NUMBER OF PAGES

49

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Research, Technology, and System Solutions (RTSS) and CERT Programs Unlimited distribution subject to the copyright.
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Executive Summary
	Abstract
	1 Introduction
	2 Supply Chain Security Risk Analysis and Mitigations
	3 An Assurance Case Reference Model for Software Supply Chain Security Risk
	4 Supply Chain Security Risk Review of a Current Program
	5 Summary
	References

