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Abstract

There is implicit trust involved when using computer software. Open-
source software attempts to inspire more trust, by giving access to the
source code. Nevertheless, malicious compilers or someone with malicious
intent can create malicious compiled code, even from non-malicious
source code. Further, comparing source code and compiled code for
equivalence is an undecidable problem. This thesis explores how software
can be manipulated so that source code and compiled code are no longer
equivalent and what can be done to increase the trust that they are
equivalent.

One such way of manipulating the compiled code is through a malicious
compiler. I demonstrate this by implementing a self-replicating compiler
attack against the Go language compiler, a modern industrial-strength
compiler. The attack is similar to the well-known trusting trust attack
and can infect a new compiler when it is being compiled, even when
the compiler is compiled from non-malicious source code. In the thesis,
I also discuss other, real-world, compiler attacks such as XcodeGhost and
W32/Induc. The attacks show that compiler attacks are viable and a real
threat.

I discuss how reproducible builds can be used to increase the trust in com-
piled code, when the source code is available. Also discussed, is how Di-
verse Double-Compiling (DDC) can be used to detect self-replicating com-
piler attacks. I introduce a variant of DDC using more than two compilers
for bootstrapping, this variant has not previously been described. This new
variant can, by utilising parallel trust combinations, increase the trust in the
verified compiler beyond regular DDC and identify which compiler has in-
serted a self-replicating attack. The new variant is implemented, and used
to detect the previously implemented self-replicating attack.
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Chapter 1

Introduction

Users of computer software will implicitly, whether they know it or not,
trust software. This includes both a trust that the software does what is
expected of it and that it should not do other things in the background. The
ability for software to do other malicious things are what we are concerned
about in this thesis.

A software compiler takes a piece of source code in one programming
language and generates a secondary piece of code, typically, in another
language. The translation is typically used to: generate machine code
which can be interpreted by the CPU, such as when translating C to
machine code, translate source code to bytecode which can be interpreted
by other software and then translated to CPU instructions, as with Java
to Java bytecode for the Java Virtual Machine, or translate source code
to a secondary language, for example, from Elm to JavaScript. A correct
translation should preserve the semantics of the source code in the
generated compiled code, but a malicious compiler can instead perform an
incorrect translation that adds malicious behaviour to the compiled code.

Open-source software attempts to inspire trust in software by giving access
to the source code. This access allows for independent review of the
source code. Nevertheless, most software, including open-source software,
is often distributed as compiled code to the end-user. The problem of
comparing compiled code to source code for equivalent behaviour is a very
difficult problem. This problem raises one very important question: how
can we trust that the compiled code is semantically the same as the source
code and without any malicious modifications?
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Because of this we have two major ways in which we can end up with
incorrect and malicious compiled code:

• A malicious entity with sufficient access can purposefully add
malicious behaviour to the compiled code that is not reflected in the
distributed source code.

• A malicious compiler can add malicious behaviour to any compiled
code created by this compiler.

The goal of this thesis is to show how software can be manipulated so that
source code and compiled code are no longer equivalent in behaviour and
how we can increase the trust in the equivalence between source code and
compiled code.

1.1 Contributions

In this thesis I have explored why there are trust problems regarding the
behaviour of compiled code, even when the source code is available. I have
also looked at how we can increase the trust in the equivalence between
source code and compiled code by decreasing the likelihood that the two
are not equivalent.

To do this I have:

• Demonstrated the viability of a self-replicating compiler attack
against a modern industrial strength compiler: the Go language
compiler.

• Described and demonstrated a variant of Diverse Double-Compiling
(DDC) capable of identifying which compiler introduced an eventual
self-replicating artefact.

• Discussed how reproducible builds and DDC can increase trust in
compiled code, with available source code, by utilising parallel trust
combinations.

2



1.2 Chapter overview

Chapter 2 introduces some necessary background in trust and two previ-
ously known compiler attacks: W32/Induc and XcodeGhost.

In Chapter 3 I discuss the compiler trap door, or trusting trust, attack. In this
chapter I introduce the graph notation used throughout the thesis, look at
the historical mentions of this attack and discuss the viability of the attack
today.

In Chapter 4 I define two important problems discussed in the thesis. In the
chapter I also discuss how software can be subverted, why the problem of
program equivalence is an undecidable problem and what proven compilers
can and cannot do.

Chapter 5 is a discussion on reproducible builds. This discussion includes
the benefits and goals of reproducible builds and how the technique can
be used to increase the trust in distributed compiled code. I also highlight
some common problems for successful deterministic compilations.

Chapter 6 describes the technique of DDC. In this chapter I look at three
different variations of DDC: the self-hosting compiler, the general case and
DDC utilising more than two grand-parent compilers. The third technique
has not previously been described in literature.

In Chapter 7 I discuss techniques that can be used to implement a self-
replicating compiler attack and show an implementation of a such an attack
against the Go language compiler.

In Chapter 8 I explain how we can reproducibly compile the Go language
compiler and demonstrate the usage of DDC to detect and identify
the previously implemented self-replicating compiler attack against this
compiler.

Chapter 9 concludes the thesis with a summary of the work and results of
the thesis, and some suggestions for future work in the area of the thesis.

3



1.3 Source code

All source code created for this thesis can be found on Github1.

1https://github.com/yrjan/untrustworthy_go
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Chapter 2

Background

In this chapter I will guide the reader through necessary background
material. I will start by explaining how we can define trust, for the context
of this thesis, and how it relates to software. After this, we will look at some
known real-world compiler malware attacks.

2.1 Trust

In this section I will discuss what trust and transitive trust means, then I
will go on to explain how we can leverage parallel trust combinations to
improve trust based on multiple sources of information and I will finish
with a discussion on trust in software to highlight some difficulties when
trusting software.

2.1.1 Defining trust and reliance

Trust can be loosely defined as the belief that something or someone is
good, honest, safe or reliable. Trustworthiness is not the same as trust,
trustworthiness is the actual good, honest, safe or reliable characteristics
held by someone or something in a specific situation. This separates
trust from trustworthiness, as the question of something or someone’s
trustworthiness is a matter of fact [4]. Trust is the belief of something or
someone’s trustworthiness held by another entity.

Note that trust or trustworthiness does not imply the other. Misplaced
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Figure 2.1: Alice and Bob both trust Oscar with their secrets. Nevertheless,
the trust is misplaced for Bob as Oscar is only trustworthy to Alice and
shares Bob’s secrets with Alice.

Alice

Oscar

Bob

(Bob’s secrets)

trust where one entity trusts another which is not trustworthy or a lack
of trust when the entity is trustworthy are both possible. It is also worth
mentioning that trustworthiness is a matter of perspective. Both Alice and
Bob might trust Oscar with their secrets. Nevertheless, Oscar can be faithful
to only Alice and share Bob’s secrets while not sharing Alice’s secrets. In
this situation one can say that Oscar is trustworthy to Alice, but not to Bob.
See Figure 2.1.

Reliance means depending on something or someone and is therefore not
the same as trust. If Alice relies on Bob to do a certain task critical for
herself, then she might have to wait with her task until Bob has finished
his task. Nevertheless, if Alice can validate Bob’s work then Alice does not
have to trust Bob’s ability to do this work. She can instead wait for him
to finish and validate what has been done [4]. It is important to note that
this might not always be a possibility. If Alice needs to fix her car, while
she herself is clueless about cars, then she might still have to trust Bob’s
work, or another which can validate the work for her. You can therefore
have reliance with and without a requirement of trust.

Trust can typically be measured in multiple ways, for example: 1)
discrete values, such as very trusted, trusted, not trusted or distrusted, 2)
continuous values, for instance, all real numbers from 0 to 1 or 3) boolean
values, such as trusted or untrusted. I will not delve further into the topic
of measuring trust as it will not be important to this thesis, however if
required, you can think of trust here as continuous values.

6



Figure 2.2: Alice trusts Bob for childcare and Bob trusts Eric as a mechanic.
This does not imply that Alice trusts Eric for either childcare or mechanical
issues.

Alice Bob Eric

(Trust, childcare) (Trust, mechanic)

(No transitive trust)

2.1.2 Transitive trust

Transitive trust is trust that is shared through another entity. In certain
cases it can hold that if Alice trusts Bob and Bob trusts Claire, then Alice
also trusts Claire through a transitive property. This depends on the trust
in question and it has been argued that trust is not necessarily transitive in
itself. This is well explained by Jøsang et al. (see also Figure 2.2):

For example the fact that Alice trusts Bob to look after her child
and Bob trusts Eric to fix his car, does not imply that Alice trusts
Eric for looking after her child, or for fixing her car. ([19])

Trust can, nevertheless, in certain cases be transitive. If Alice trusts Bob’s
repair shop to fix her car, knowing that Bob might outsource some work to
another repair shop, and Bob trusts Eric’s repair shop to do this work and
outsources this to Eric’s repair shop. Then Alice has indirect trust in Eric
through transitivity. Alice trusts Eric, knowingly or unknowingly, for the
purpose of fixing her car. See Figure 2.3.

2.1.3 Increasing trust through parallel trust combinations

In scientific work it is widely regarded as a positive to be able to cite
multiple trusted sources when presenting believed truths. Similarly, I will
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Figure 2.3: Alice trusts Bob to fix her car, knowing that he might outsource
some work. Bob trusts and uses Eric as a mechanic to fix Alice’s car. Alice
therefore, knowingly or unknowingly, trusts Eric to fix her car through
indirect transitive trust.

Alice Bob Eric

(Trust, mechanic) (Trust, mechanic)

(Transitive trust, mechanic)

here argue that multiple and diverse trusted sources can increase transitive
trust.

This can be modelled in trust as parallel trust combinations. Imagine this
example: Alice has computer trouble and seeks her trusted sources Bob and
Claire to recommend a person to fix her computer. Both Bob and Claire
trust and recommend Eric as the person to fix Alice’s computer. In this
case the trust in Eric is intuitively strengthened as parallel combinations
of positive trust has the effect of strengthening the derived trust [19]. See
Figure 2.4 for an illustration of this.

It is unclear exactly how one is to handle differing trust statements, for
example, if Bob tells Alice to avoid Eric in the above example, while Claire
still recommends Eric. Intuitively one possible solution to this could be
to weigh the trust in Bob and Claire. If Alice’s trust in Claire is much
greater than the trust in Bob, then Alice might look at the sum of opinions
weighed by trust and in effect discard Bob’s opinion. One could also weigh
different opinions differently: if you were to weigh distrust more heavily
than trust, then the trust system could be made to allow distrust to be
more visible in a system that generally has more trusting than distrusting
opinions. This could be useful to avoid drowning out rare opinions in some
circumstances.

There is some opportunity for collusion in the intermediary sources to

8



Figure 2.4: Alice trusts the recommendation of both Bob and Claire,
therefore her derived trust in Eric is stronger than if she only had the
recommendation of either Bob or Claire.

Alice Bob

Claire

Eric

(Trust)

(Trust)

(Trust)

(Trust)

(Increased transitive trust)
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increase the trust in a regard that is positive for them. This can intuitively
be helped by finding diverse intermediary sources. For example, if two
sources happen to have the same employer you run an increased risk of
this employer influencing both of these sources. This can therefore be
somewhat minimised by finding diverse sources when using parallel trust
combinations.

2.1.4 Trust in software

When running and/or writing software we will often be in a situation
where we rely on other software. We will most likely rely on both other
applications and libraries. Even if we are to write our own operating
system we might still rely on a compiler or on other pieces of software.
How is it possible for us to trust this software and to what degree can we?

Modern software is generally built with dependencies upon other pieces
of software. Dependencies can be other libraries, interpreters, compilers or
other programs. These dependencies are often managed through some sort
of package management system, this can both be specific for the language
itself, like the Node Package Manager (npm) for JavaScript or PiP for
Python, or it can be for the operating system, like Apt for the Debian
project. These package managers generally solve the same problems, but
at different levels: language specific package managers will often install
packages at the user level, while the operating system package managers
will generally install packages at the system level. Some package managers
will install binary, compiled, software while others will merely give you the
source to compile, or run for interpreted languages. The problem a package
manager is attempting to solve is: how can we install and configure a piece
of software that depends on other pieces of software correctly. Further, how
can we install the piece of software that we depend on, and all the pieces
of software that this dependency depends on again. This will often leaves
us with deep dependency trees where we will rely on many other pieces
software and it can be very difficult to get an overview of these trees as the
number of transitive dependencies can grow exponentially.

In this section I will specifically look at the npm JavaScript package
manager as there are multiple articles written on its ecosystem, however
I expect that many of the results will be similar to those of other package
managers.
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In 2016, Wittern et al. [47] analysed 185,005 packages from the npm
JavaScript package manager. This analysis revealed that the average
number of direct dependencies for a package were 4 to 6 packages.
Nevertheless, only 27.5% of all packages had any packages depending on
it. The paper does not reveal the average total number of dependencies for
packages including transitive dependencies, however it seems reasonable
to assume that the number is much higher than the 4 to 6 direct
dependencies.

In 2017, Decan et al. [5] analysed 317,159 packages from npm. This
analysis showed that 60% of all npm packages have dependencies. It
further showed that amongst the packages with dependencies half the
packages had at least 22 transitive dependencies and a quarter of the
packages had at least 95 transitive dependencies. The average number of
transitive dependencies in npm packages were 22.1 times the number of
direct dependencies.

The examples from [5, 47] show us that these dependency trees can grow
exponentially.

This reliance on transitive dependencies can be a major problem as shown
in npm when the left-pad package was unexpectedly removed from npm
in March 2016 [5]. This removal broke thousands of dependent packages,
including many who only had left-pad included as a transitive dependency
and were not even aware of their dependency upon this piece of software.

The left-pad example leaves us with an important idea of how transitive
trust can work in regard to software. This example shows that when
we rely on other software as a dependency using a package manager,
we are implicitly relying on this software and/or the package manager
repositories themselves. Either can potentially break our software, for
example, by taking down the packages from the repository. This can
happen with both direct dependencies and transitive dependencies.

There are also security implications in the trust of these dependencies. In
2017, Pfretzschner & ben Othmane [30] discussed multiple possible attacks
that can be performed in maliciously crafted npm dependencies. It is
important to keep in mind that this malicious behaviour can be introduced
later in the lifetime of the dependency, and they do not have to occur in an
earlier reviewed version of the dependency. It can therefore be as important
to review any updates to a dependency as reviewing any new dependency

11



and it is also important to acknowledge and be aware of the potential for
maliciously crafted dependencies.

In some dependency systems using package managers the dependencies
can be locked down to only allow specific versions of the dependencies to
be installed using dependency constraints. If any package is to be updated
then you will have to do this through a new version of the package in
question, as the package version system in the package manager will not
allow updates of packages without also incrementing the version number.
The version number serves as a ‘guarantee’ of what you are supposed to
get.

Using such a system, one can lock down dependencies to specific package
versions and precisely review and allow specific versions of packages. This
allows us to rely on a dependency without trusting it as it is then possible to
closely look at all the resulting dependencies, granted that all dependencies
of yours also use dependency constraints.

If no dependency constraints are in use and you later let the package
manager pull in the dependencies, perhaps while attempting to compile
the project on a new system, you are implicitly trusting that there are no
malicious dependency changes.

Nevertheless, there is also a downside to using dependency constraints to
only allow specific packages. One such major downside is that the package
itself might have important security updates in a newer version, if such
security updates are present then it could be a negative that the package
manager won’t automatically update to the latest version. It can from this
be said that dependencies are a real and potentially difficult problem to
deal with. Both dependency systems with and without constraints require
the maintainer of software to be aware of updates to dependencies and how
they will affect the security and/or stability of the software.

As an example of a security failure in a dependency, we have the 2017
Equifax security breach [24]. This breach was enabled by a failure to update
to the latest version of the Apache Struts library. Amongst other data, credit
card numbers for approximately 209,000 users were compromised [9].

When attempting to trust software, it is not unusual to review the source
code. Reviews of source code are done, as reviewing the compiled code
is generally considered to be much harder than the former. Review of

12



the source code does, however, not necessarily create a complete and
ultimate trust in the program and there are many examples of malicious
code hidden ‘in plain sight’. One good example of this is the Underhanded
C contest [41]: in this contest the contestants competed in writing code
that looked innocent while being purposely misleading. It is also both
hard and difficult to gain a good overview over the entire source code
to large and complex programs that are in real life use, many of which
consists of many millions of lines of code. In these situations small bugs,
such as Apple’s infamous SSL ‘goto bug’ where a single duplicated line
subverted the program so that it was possible to skip verification of an
SSL certificate [8], can create major security implications. Nevertheless,
review of source code is still the preferred tool to review the actions of
a program. In most cases, the compiled code is a magnitude larger in
scale when counting the number of operations performed, than the source
code, additionally very useful information such as variable names, function
names and comments are rarely included. It is therefore usually regarded
as too difficult and time-consuming to do a full review of the compiled
code.

Advocates of open-source software will often claim that open-source software
is more secure than proprietary, closed-source, software as it allows
for independent inspection of the source code. This will then allow
for malicious or erroneous code to be more easily detected through
independent review. This can be seen as another implementation of parallel
trust combinations as seen in Section 2.1.3. Using this, open-source software
attempts to inspire trust in software by allowing multiple programmers
from all over the world access to the same source code, and therefore
allowing the potential users to divide their trust over many developers
with, potentially, many diverse viewpoints and therefore a lower likelihood
of collusion.

2.2 Known compiler malware attacks

2.2.1 W32/Induc

W32/Induc is a self-replicating virus that works similarly to the compiler
trap door attack [39, 44]. The compiler trap door attack will be further
explained in Chapter 3. The virus inserts itself into the Delphi source

13



libraries upon execution, infecting the compiler toolchain. It then inserts
itself into all produced executables from the infected toolchain. The virus
targets Delphi installations running on a Windows platform.

The virus has come in three known variants named Induc-A, Induc-B and
Induc-C [39]. It is by some believed that the two initial runs were testing
versions to test the insertion of the virus building up to the release of the
more malicious Induc-C virus.

Upon execution of an infected file the virus will check for the existence and
location of a Delphi installation [39]. Early versions of the virus looked for
Delphi installations by looking for a specific registry subkey. Later versions
will instead search the hard drive for a compatible Delphi installation.

Once the installation is found the virus will create a backup of the original
SysConst.dcu (for earlier versions of the virus) or SysInit.dcu (for later
versions of the virus) used for all produced executables [39, 44]. After this it
will copy the SysConst.pas or SysInit.pas file from the object library, modify
the source code to include the malicious behaviour and compile the file. It
will then be inserted so that it is used instead of the original SysConst.dcu or
SysInit.dcu. At this point the Delphi compiler is infected and all produced
executables from the compiler will also include the virus.

Induc-C also includes the ability to infect any .exe files on the computer [39].
This greatly increases the virus’ ability to spread to other computers.

The initial versions of the virus (Induc-A and Induc-B) seem not to include
any malicious behaviour other than self-reproduction [39]. In contrast,
Induc-C includes behaviour where it downloads and runs other malware.
It does this by downloading specific JPEG-files containing encrypted URLs
in the EXIF-sections. It will then download and execute the malware at
these locations. Amongst known malware executed is a password stealer.
It is also reported that Induc-C includes behaviour such that it can be used
for botnets.

The known defence against the attack is anti-virus software which can
detect infected executables or infected object files [44].

As of September 2011, over 25% of all detected Induc infections recorded
were recorded in Russia [39]. For Induc-C most of the detected infections
occurred in Russia and Slovakia.
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This attack is quite similar to the compiler trap door attack as they
both attack compilers and include self-replicating behaviour. The main
difference between this and the compiler trap door attack is that instead of
attaching the virus to the compiler executable it inserts itself into object files
used for the compilation of all programs using the infected toolchain. The
compiler executable itself does not get infected unless it is also produced
using this toolchain.

As the malware isn’t specifically attached to the compiler executable it can
be easily delivered through any infected executable and will then further
spread itself to all compiled executables. It is reasonable to believe that this
method will resort to a virus that spreads itself faster to more computers,
however it might also be easier to detect.

2.2.2 XcodeGhost

In September 2015 a new compiler malware attack was discovered in
China. This attack targeted Apple’s Xcode development environment, the
official development environment for iOS and OSX development.

The attack was a malicious compiler that the user can download. As users
in China had slow download speeds when downloading large files from
Apple’s servers many users would instead download Xcode from other
colleagues or from Baidu Wangpan, a Chinese cloud service created by
Baidu. The malicious compiler is believed to initially have been spread
through Baidu Wangpan [27].

This malicious version of Xcode replaces CoreServices object files with
malicious object files. These object files are used for the compilation of
many iOS and OSX applications. It is unknown to the author if the attack
did anything to OSX applications. Nevertheless, the attack infected many
iOS applications. These applications were then spread through the Apple
App Store to the end-users while neither the users of the applications or
the developers of the applications knew of this. Pangu Team claims the
attack infected at least 3418 different iOS applications [25]. Amongst the
apps infected were WeChat version 6.2.5, a very popular instant messaging
application [22]. In September 2015 WeChat had 570 million active users
daily [26]. As iOS had a mobile phone market share of roughly 25% at
the same time, it is to be expected that the virus can have reached many
millions of users [23].
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The infected iOS applications will gather system data, encrypt it and send
it to a remote server using HTTP [27]. The application also contains the
ability to attempt to trick the user into giving away their iCloud password
through a crafted dialogue box. Further the attack can read and write to
and from the clipboard. It can also craft and open malicious URLs, this can
also be used for malicious behaviour through crafting specific URLs that
open other apps with security weaknesses [43].

The attack seems to have spread mostly in China as the applications
infected were mostly Chinese developed applications that mostly targeted
the Chinese market [18]. Nevertheless, applications such as WeChat have
been popular in larger regions of eastern Asia. The malware can therefore
also have spread to larger regions [22].

Pangu Team also released an application to detect malicious applications
created through XcodeGhost infected compilers [25].
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Chapter 3

The compiler trap door

The compiler trap door, or trusting trust attack, is a hypothesised self-
perpetuating compiler attack. In this thesis both names will be used to refer
to the same type of attack. In this chapter I will first discuss the, famous,
previous mentions of the attack and then go on to further discuss the attack
in the context of today. There are no known reports of this attack ‘in the
wild’.

3.1 Compilation graph notation

We will in this section explain the simplified graph notation used by
Wheeler in [46]. We will use this graph notation to show compilations and
results, particularly for when we require multiple compilations based on
the previous result. See Figure 3.1 with the following symbols:

• cX is the compiler used.

• sY is the source compiled.

• E is the environment used.

• l is the unique label of the compilation step.

Wheeler’s expanded graph notation includes another input to the compil-
ation process, referred to as either I, for other input, or e, for effect. Both I
and e represent the same information, and are used to model information
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Figure 3.1: Simple example of compiler graph notation

l

Compiler cX

Source code sY

Compilation result:
compile(sY,cX,E)

from the environment, such as random number generation, thread schedul-
ing, platform differences, working directory and others [46]. Wheeler him-
self has not used this, I, input in the informal description in [46] and I
believe that this input is unnecessary here, as it is perhaps more confusing
than helpful. We are also already including the environment, E, in the res-
ults from the compilation process. Nevertheless, keep in mind that there
will always be the possibility that the environment creates differences in
the executable built, depending on the compiler and the build system. Be-
cause of this it can be important for the reproducible results of the compiler
to stabilise the environment E to prevent such problems.

3.2 Related work

The first known mention of a self-replicating compiler attack was in a 1974
security evaluation, for the Multics operating system, by Paul A. Karger
and Roger R. Schell [20]. In this security evaluation the attack was named
a ‘compiler trap door’, and is hypothesised as an attack that would survive
the recompilation of the entire system.

The attack was later, and more famously detailed by Ken Thompson in his
1984 Turing award lecture: ‘Reflections on Trusting Trust’ [42]. It is from
this text the attack has received its, perhaps, more common name: (the)
trusting trust attack.

According to Karger and Schell this attack could insert what they refer to
as an ‘object code trap door’, a malicious attack that would insert itself into
a ring 0 module of the Multics operating system [20]. Multics had eight
privilege levels, numbered 0 to 7 where ring 0 is the most privileged level.
This is similar to how modern IA32 architectures have privilege levels 0 to
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Figure 3.2: Compiler trap door maintaining itself

1

cP

sC

2

. . .

n

(Compiler with trap door)

(Source code without trap door)

(Compiler with trap door)

(Compiler with trap door)

(Compiler with trap door)

(Compiler with trap door)

3, where 0 is again the most privileged level and the level of the operating
system kernel [17]. A ring 0 module in Multics is a module that runs at
the highest privilege level of the operating system. This insertion could be
done by inserting the attack into the PL/I compiler to maliciously corrupt
a ring 0 module upon compilation, as most of the ring 0 modules were
written in PL/I. Whenever the module would be recompiled, the attack
would then simply reinsert itself into the module and the attack would
maintain itself upon recompilation of the module. A ring 0 module could
this way be the target of an attack, without it showing in the source code
listing of the module itself.

To further propagate this attack, the PL/I compiler, which was also
written in PL/I, could be made to reinsert the attack when recompiling
the compiler [20]. This meant that the attack would be maintained, even
when the compiler was recompiled. This makes the attack hard to remove,
without replacing the compiler itself with a new compiler built from a
different toolchain.

A graph illustration of the compiler trap door maintaining itself is
represented with Figure 3.2. Here we see a parent compiler cP containing a
trap door, whenever we recompile the compiler with source sC the compiler
inserts the trap door into the newly created compiler. This trap door is not
in the source sC, it is maintained only in the created executables.

In his text Thompson describes a C compiler that will deliberately miscom-
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pile source code, when a particular pattern is matched [42]. As UNIX was
written mainly in C, an attack into the C compiler would have had the po-
tential to corrupt almost any program in the system upon compilation. He
calls it a ‘Trojan horse’, and notes that it would be a ‘bug’ if it was not de-
liberate. This attack is very similar to the attack described by Karger and
Schell, and in his text Thompson also acknowledges that he has taken in-
spiration from this Multics security evaluation, although he could not find
the correct document for referencing. The attack, when planted into the C
compiler, would recognise the ‘UNIX login program’ upon compilation and
maliciously add a backdoor that allowed a specific password for access to
any user of the system. The attack would however be easily viewable in
the source code of the compiler in the current state.

To hide the attack, Thompson borrows techniques known from self-
reproducing programs, also known as quines [42]. Quines are programs
that can reproduce, or output, their own source code when run, without the
usage of any external inputs such as reading the source code. Quines will
be further discussed in Chapter 7. He uses similar matching as was used
to miscompile the login program, but also matches the C compiler. When
the compiler is matched, he will use these self-reproducing techniques and
reinsert the compiler attack, or bug, into the new compiler binary. When
we now compile the compiler using this malicious compiler binary, any
compiler built from this compiler again can be infected with this Trojan
horse. The attack will by then also be removed from any source code to
remove, almost, all traces of the attack.

Karger and Schell goes on to mention that the attack does not have to be
inserted into the compiler, but can also be inserted into the assembler [20].
Thompson goes further and states that he could have inserted the attack
into ‘any program-handling program such as an assembler, a loader, or
hardware microcode’ [42].

It is also interesting that at this time the attack was described as ‘quite
practical to implement’ [20] and that a cost of the attack is small enough
that even ‘costs several hundred times larger than those shown here would
be considered nominal to a foreign agent.’ [20]. This demonstrates an early
awareness of the risk of such attacks and also that they are practically
possible to implement without being too costly.

It is to be noted that Ken Thompson’s point is that you have to trust
someone, unless you’ve designed the entire system yourself from the
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ground up, as malicious behaviour can be inserted into any program-
handling program or hardware. Nevertheless, we will here focus on
defending against the attack and assume that the other underlying software
and hardware is not compromised. It is, after all, still important that this
specific attack can be detected and that we may defend against it. In
Chapter 6 I will present a technique capable of detecting a self-replicating
compiler attack.

3.3 The attack today

The compiler trap door is a viable attack and a definite possibility, though
there are to best of my knowledge no documented instances of the attack in
the wild. Nevertheless, there are demonstrations of the self-reproductive
compiler behaviour needed to create such an attack [31]. In Chapter 7 I
will show another implementation of such an attack and explain how it is
possible to do.

There exists the argument that the attack is less problematic today as
today’s software is mostly distributed in binary form, while in the days
of the Multics and early UNIX software was primarily distributed in
source code form. This is perhaps not a bad argument, but I will instead
argue that the target for the compiler attack has shifted. As seen by, for
example, XcodeGhost in Chapter 2, targeting software distributors with
compiler malware attacks has the potential ability to spread to very large
groups of users. The users can receive binary files from the software
distributor, with security measures such as cryptographic signatures and
cryptographic hashes showing no corruption. The files can, however, still
be maliciously corrupted. This can happen without the knowledge of the
software distributors or developers of the software. The damage potential
of such an attack inserted into the build system of a major software house
or a major Linux distribution could be enormous.

The attack relies on either replacing the installed compiler at a target, or
tricking the target to install the malicious compiler. It does not include
any distribution mechanics in itself. Nevertheless, there are many ways
in which an attacker can get the compiler installed: this includes disloyal
users with access to the system, social engineering, other security holes that
allows for access to the system and other attacks. Further, there’s also the
possibility that the attacker can trick the users into deploying the malicious
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compiler themselves, such as was seen in XcodeGhost in Chapter 2.

This means that even though the primary target of this type of malicious
compiler attack might in the past have been the end user, the primary
target today can be major software distributors which then, unknowingly,
distributes corrupted compiled code to the end user. The end-user will
have no way of knowing if this compiled code has been corrupted. I
therefore find it reasonable to say that compiler trap door attacks, and other
compiler attacks, are still a possible threat to be taken quite seriously.

A self-replicating attack can be inserted into any self-hosted compiler
toolchain. A self-hosted compiler is a compiler that can compile itself.
The perhaps simplest way to create the attack is to make it detect and
manipulate source code, however it doesn’t have to. For example, the
attack can also detect and manipulate the abstract syntax tree (AST)
generated by the compiler, intermediate representation (IR) generated by
a compiler front end, the generated assembler output or other data. There
are many ways for the attack to function in this regard and it would be
foolhardy to discount any of them as unrealistic or impossible.

The main requirements for this attack is that it has the capabilities to:

• Recognise the software it wants to attack. Note that as seen in modern
compiler malware, such as W32/Induc, this can be all compiled
executables, the attack does not necessarily need to limit the malicious
corruption to a specific compiled executable.

• Recognise the program the attack wants to self-reproduce into. This
could be a compiler, but it can also be the assembler or other program-
handling programs.

• Insert malicious code into both above for the attack and for the
maintenance of the attack through self-reproduction.

It is important to note that it would be an undecidable problem to detect all
possible compilers and correctly insert the attack this way. Nevertheless,
it is not too difficult for competent would-be attacker to detect a specific
compiler or multiple specific compilers and insert the attack into these.
In large and complex programs such as compilers, much of the code
might be the same for many versions of the program over many years
of development. Therefore, the attack would have the ability to stay
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for years, reproducing into new binaries bootstrapped from old infected
binaries, before encountering problems related to new and, to the attack,
incompatible changes.

3.4 Modified attacks

Although this thesis is focused on the compiler version of the attack,
it is not the only place where the attack can be placed. As mentioned
in Section 3.2 the attack can be located in any program handling code.
Variants of modifying source code attacks have also been shown against
the Linux kernel [29]. There is no doubt that attacks like these could be
modified to add self-perpetuating behaviour by modifying specific parts
of the kernel compile process.

This chapter had a focus on attacks inserted into a self-hosted compiler,
but the attacks are not limited in scope to this: it is very possible to
create a modified attack in one compiler that when used to compile a
second compiler would insert an attack. It should even be possible, though
perhaps more costly than a regular compiler trap door attack, to insert such
an attack to work in a cycle, if multiple compilers were to be created so
that multiple compiler were dependent on each other in a cyclic fashion.
That is: compiler A is compiled by compiler B and compiler B is compiled
with compiler A. Figure 3.3 shows a cyclic attack where cM is the malicious
compiler that inserted the compiler trap door into the cycle, sA is the source
code of compiler A and sB is the source code of compiler B, note that this
attack can also continue indefinitely.

Figure 3.3: A cyclic compiler trap door

1

cM

sA

sB 2

(Original malicious compiler)

(Compiler A with trap door) (Compiler B with trap door)
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3.5 Conclusion

This attack, as shown, is a potential major security threat. If inserted into
a system, it can modify programs while also securing its own continued
existence through self-replicating behaviour. It is not known why the attack
has not been seen ‘in the wild’. One such reason could simply be that the
attack has never been detected or documented publicly. I will look further
at how it is possible to implement such an attack in Chapter 7.
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Chapter 4

The problem

In Section 2.1.4 we took a look at some of the difficulties related to trusting
software. In the same section, it was also discussed that the usual way to
establish trust in software is to review the source code. We have already
seen in Section 2.2 and Chapter 3 that there exists compiler malware
that will make compilers produce malicious programs from non-malicious
source code. This opens up two important question:

• How can we trust that our compiled code accurately reflects the
source code in review? If we were to download already compiled
code, can we trust that this is a fair representation of the source code?

• How can we trust that a compiler contains no self-replicating attacks?

Most compilers in use today are what is known as optimising compilers.
These compilers will apply extra transformations to optimise the generated
program for runtime speed, smaller files, less memory usage, less power
usage or other beneficial optimisations. The goal of the optimising
compiler is, however, still to retain the semantics of the source code. These
optimisations are often very non-trivial for the human programmer to do
and can dramatically alter the generated code from the compiler from the
source code.

The concern with this is that it also gives us compiled code that can be
difficult to follow. The generated compiled code can have gone through
major changes, such as the removal of certain variables, functions and
loops and even reordering of instructions. Even if different compilers were
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to generate the same code before optimisations, the different compilers
can use different optimisations, leading to different compiled code. To
put it simple: we can not expect a bijective function, a one-to-one
correspondence, between the source code and the created compiled code.
A human comparison between source code and compiled code would, at
best, be very time-consuming, as for non-trivial programs the source code
can often be millions of lines of code and the compiled code can be even
more, if translated to machine code. When we further take into account
the optimisations and changed internal behaviour of the compiled code,
the comparison of source code and compiled code is both non-trivial for
humans and extremely time-consuming for non-trivial programs.

In this chapter we will take a further look at this problem of comparing
source code and compiled code.

4.1 How can software be subverted?

I will here divide the ways non-malicious software may be subverted
into malicious software into three major categories: pre-compilation, in-
compilation and post-compilation.

Pre-compilation modification of software will typically be a modification of
the source code. A malicious actor can, without any difficulty, distribute
source code that is clean from malicious behaviour and compiled code
created from slightly altered source code. This compiled code can
include malicious behaviour. I do not regard this as a major threat to
software compiled on your own system, granted that the system is already
secure and the source code is trusted to be without malicious behaviour.
Nevertheless, this is a threat to any already compiled software that is
downloaded and installed.

In-compilation modification of software can be done by a malicious compiler
or other malicious systems that handle the source code, such as a malicious
operative system. In this way, non-malicious source code can be detected
and modified during the compilation process and can then produce
malicious compiled code. The known compiler attacks discussed in
Section 2.2 and the hypothetical attack discussed in Chapter 3 are examples
of such attacks. This type of attack can be a threat to all software, even
software compiled on your own system from trustworthy source code, if
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the software or hardware that handles the source code is not trustworthy.

Post-compilation modification of software is modifications done after the
compiled code has been created. It is possible to take compiled, non-
malicious, code and turn it into malicious compiled code. For example,
given an executable it is possible to modify this executable and insert
malicious behaviour. This has in the past been used for viruses.

Combinations of the above methods are also possible. My example
implementation of a trusting trust attack in Chapter 7 would be a pre-
compilation attack, as it written in source code, and an in-compilation
attack, as it during a compilation process modifies the output and corrupts
the compilation process.

4.2 Considering the equivalence of programs

The most immediate thought one perhaps might have in regard to trusting
that the compiled code does not include any malicious behaviour, that the
source code does not, would be some sort of prover: a prover that proves
that one program in one language, is equivalent to another program in
another language. After all, the task of the compiler is to translate from
one language to another. Creating this prover is actually an undecidable
problem, when given Turing complete languages. Most languages in use
today are Turing complete, and we will also focus our efforts on these
languages.

One way of showing that this problem is undecidable would be to show
that if this program has a solution, then it would also be able to solve
another proven undecidable problem. As the other problem is proven to be
undecidable, then this problem can in fact not be decidable. It would be a
contradiction.

We know that the Halting problem is undecidable, this was famously proven
by Alan Turing in 1936. Therefore, if we can show that a solution to
our problem of equivalence would also solve the Halting problem, we
know our problem is undecidable. This can easily be shown. Note that
we can here imagine program equivalence as something like: ‘if one
program terminates with a specific return code, the other program will
also terminate with the same return code’. As we are interested in Turing

27



complete languages there is, of course, always the possibility that neither
program terminates.

Now, if we imagine a solution to our problem of program equivalence we
will discover a problem. We can easily see that this program cannot be. This
is because this solution would also be able to solve the halting problem. If
we were to compare a given program, with a program known never to
return, a simple infinite loop would do, then this program would give us
a solution to the halting problem. If the programs are equivalent we know
that the given program never halts, if the programs are not equivalent
we know that it halts. This solution cannot be, and we can not create an
algorithm that will tell us if any two programs written in Turing complete
languages are equivalent.

4.3 Proven compilers

There is a current effort to create formally safe compilers. Perhaps the most
famous example of this is the CompCert C compiler created by the CompCert
project [36]. This is a compiler for a subset of the C programming language
they’ve called C-light. This subset covers most of the C99 ISO standard. For
this project they have proven the conversion from a C-light abstract syntax
tree (AST) to an assembly language AST using the theorem proving tool
Coq [37]. In fact, the CompCert C compiler is written in Coq. This is a major
and impressive effort and is a good step in the direction of proving that the
compiler does not contain wrong behaviour.

Nevertheless, it does not protect the compiler from malicious infection
and is therefore still vulnerable to attack. If, for example, the CompCert
C compiler were to be infected post-compilation, or in-compilation by a
malicious Coq compiler, it would still be possible to produce a malicious
version of the compiler. In this way, proven compilers do not protect us
from malicious behaviour. The malicious behaviour can still be added and
sidestep the entire proving process.

This author does not believe this diminishes the importance of proven
compilers, they are a massively useful tool to avoid miscompilations and
bugs introduced by the compiler. However, at some point the compiler
will typically be compiled into Turing-complete a language. It is possible
for someone with malicious intent to subvert the compiled code of the
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compiler, the compiler executable, so that it contains malicious behaviour,
we therefore still need some way to trust that this compiled code is in fact
equivalent to the source code.

4.4 Implications

It is an undecidable problem to show that source code and compiled code
are equivalent, for Turing complete languages. This makes it very difficult
to see that there is no added malicious behaviour in the compiled code, as
there is no good way to directly compare the two.

This being said one might come at the problem in a slightly different
manner, what if we were able to reproduce the compilation process on
multiple systems. If we had the same compiled code from multiple systems
that would imply that either all the systems, or none of the systems,
produced malicious code. This is the approach we look at in Chapter 5.

Malicious compiler attacks are also a major threat, especially self-
replicating ones, and I will look at a technique for verifying compilers in
Chapter 6.
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Chapter 5

Reproducible builds

Reproducible builds is an attempt to solve the problem of equivalence
between source code and compiled code, using deterministic build pro-
cesses which allows for a verifiable path between source code and com-
piled code [33]. A build can be said to be reproducible, if it can be recreated
bit-for-bit by using the same source code, compiler and build instructions.
This is to allow for independent verification of compiled code.

Reproducible builds is currently a major ongoing effort in large open-
source communities such as Bitcoin and The Tor Project, which uses
Gitian [16], and different Linux distributions, such as Debian [28] and
openSUSE [32], which attempts to make sure every package built and
distributed by the projects, can also be reproduced.

The goal of deterministic compilations and reproducible builds is for the
result of different compilations, typically running on different systems,
to be bit-for-bit identical. The act of checking whether the compilation
is identical will typically be performed using cryptographic hashing
algorithms.

5.1 Benefits and goals of reproducible builds

These projects see multiple reasons and goals in implementing reprodu-
cible builds. These goals include, but are not limited to, the following:

• Allowing independent third-parties to check for reproducibility and
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alert others if distributed compiled code is not reproducible and
therefore can have been tampered with [16, 33]. This removes the
build and distribution process as a single point of failure and allows
for increased trust through parallel trust combinations, granted that
there exists trusts in the reviewing third-parties.

• Removing the incentive to attack developers who release software,
this covers both ‘hacking’-attacks and other attacks such as black-
mail [33].

• Detecting bugs such as changing constants across different builds of
software [21].

In this thesis our focus is on the ability to verify that software has not
been maliciously corrupted, knowingly or unknowingly. Implementations
of reproducible builds allows for some detection of malicious compiler
attacks against build systems, such as replacing the compiler used for a
build system.

If downloaded compiled code can be reproduced bit-for-bit, this means that
either the compiled code is an as-fair-as-the-compiler-allows representation
of the source code or your system contains the same modifying behaviour
that has created the corruption in the compiled code. Reproducible builds
can therefore not stop malicious compiler attacks, if your compiler is also
infected. Nevertheless, if your system does not contain malicious, build
changing, behaviour, a bit-for-bit reproducible build would prove that the
compiled code is as perfect as the compiler allows.

As the compiler might still have flaws such as bugs, a bit-for-bit identical
build, would however not prove that the compiled code is a flawless
rendition of the source code. To further account for this, the best solution
would seem to be proven compilers as discussed briefly in Section 4.3.

5.2 Requirements for reproducible builds

To be able to create reproducible builds we require a build system,
including the compiler. If the compiler and build system are not fully
deterministic by default, the ability to make them deterministic are
required. This can, for example, be to select the random seed, if the
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compiler uses pseudo-random behaviour to create the compiled code. With
certain compilers, however, it can be impossible to produce deterministic
outputs [10].

Ideally for reproducible builds, the build system would only be determ-
inistic with regard to the source code. The build system would ignore all
other inputs. This is unluckily rarely the case, as it is very common for the
build system to capture some data from the environment. This data can be
the current time, the build path or other details. In Debian they attempt to
strip out some of this data, using a tool named strip-nondeterminism, how-
ever this tool is regarded as a temporary workaround.

We typically require a very controlled environment, with specific compiler
versions and build instructions, to get reproducibility. Gitian creates
this control by doing this deterministic build inside a specific Virtual
Machine (VM), that is being fed the instructions through a specific YAML-
script [6]. Debian assumes that packages from their own repository are
built according to the packaging instructions, with specific dependencies
and environmental information in a buildinfo-file created for the purposes
of reproducible builds [35].

There are many reappearing issues when attempting to make software
reproduce. Below is a list of some typical and often solvable problems,
however this list is by no means complete and serves only as an illustration
of the difficulties faced:

• Parallel compilation: some compilers will produce different results,
based on the run-time ordering of parallel compilation. In these
compilers this can lead to race conditions creating differing results,
for example, based on the order of completion for compilation of
source code files. In some compilers, such as the Rust compiler,
disabling parallel compilation can solve this problem, however this
is also likely to slow down the compilation process [3].

• Working directory: another common problem is if the compiler
records path information based on where it was built, for example
for debugging purposes [34]. This is often solvable by doing all
compilations from the same path, which often can be automated.
The problem of compile path is a common enough problem that the
reproducible builds effort in the Debian project specifies that the build
path is to be specified in the buildinfo-file [35].
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• Included timestamps: some compilation processes include timestamps.
For example, to note the exact time the build was done, to use for
version information [34, 35]. There are multiple suggested solutions
for this, including removing this dependency from the source code
and build system, removing or changing the timestamp from the
compiled code through tools such as strip-nondeterminism or setting
the time to the latest entry of the changelog in the project.

• Locale: differences in locale, regional and language based settings can
create differences [34]. This can affect the reproducibility between
different systems when dates are rendered and included into the
compiled code or when alphabetical sorting varies based on this. A
way of avoiding this problem is to always use a common locale.

• Pseudo-random behaviour: in some cases pseudo-random behaviour
is included in compilers. This can be used for generation of
identifiers [34]. If these identifiers are then included in the compiled
code, it can be important to set this seed and include it in the build
information.

• Unsorted inputs: in certain cases a build system will sequentially act
on files or other data, in a pseudo-random order. This might happen
when selecting files using pattern matching, such as a wildcard, for
compilation [34]. These files can then be listed in an unsorted order,
and not alphabetically. This can be solved by specifically sorting such
inputs, note that locale as mentioned above might also be a problem
when sorting.

5.3 Effect and conclusion

Some major projects have started to implement reproducible builds. One
major example is the Debian project, where the current stable release,
Debian 9, has been able to reproduce 94.0% of all source packages, as
of July 2018 [28]. The remaining 6% that are not reproducible does
not necessarily mean that this software contains anything malicious, as
reproducible builds is a newer effort and there’s still work being done
on making all packages with available source reproducible. Another
major Linux distribution, openSUSE, also has a major ongoing effort to
implement reproducible builds and, as of June 2018, 94.7% of all packages
in the Tumbleweed distribution of openSUSE were reproducible [32].
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Reproducible builds is a useful and important tool for increasing trust
in distributed compiled code, by allowing for independent review. This
allows users to themselves check that the compiled code is the same, as
what they themselves can create on their system, and for the users to utilise
parallel trust combinations to increase the trust in downloaded compiled
code, if there exists trust in others independent reviews.

Reproducible builds can be used to detect some malicious compiler attacks,
and malicious developers, however it can not detect all. If the compiler
on the verifying system has the same malicious compiler, to use for
verification, the results can be identical. As they would both insert the same
malicious behaviour, into the tested compiled code. An already existing
self-replicating compiler attack could therefore go undetected, even when
verifying compiled code using reproducible builds.
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Chapter 6

Diverse Double-Compiling

Diverse Double-Compiling (DDC) is a technique to create a new compiler
with the goal to verify the absence of self-replicating attacks, such as the
compiler trap door/trusting trust attack. It does this by attempting to
ensure that the source code and the result from the compiler matches, given
compilation from two different compiler toolchains. According to Wheeler,
the technique was first described by Henry Spencer in a 1998 mailing list
post [46]. Through this chapter I will use Wheeler’s graph notation, as
specified in Chapter 3.

This chapter will rely heavily on the dissertation and article on the topic
by David A. Wheeler, as they are the two major pieces of literature on the
topic [45, 46]. Sadly some of his references are now no longer reachable on
the internet, and in these cases where we can no longer find the primary
source we have to base our knowledge on this secondary source.

I will here describe how to perform three variations of the technique: 1) the
simple case of a self-hosted compiler, 2) the more advanced general case of
a compiler that is not self-hosting and 3) a variation on the technique using
more than two initial compilers.

The technique can be used to either verify the absence of a specific attack, or
the absence of any attacks. To verify the absence of a specific self-replicating
attack, we will need to compare the results of compilers built from two
different toolchains that we trust do not contain the same specific attack. To
be able to verify that the compilers do not contain any self-replicating attack,
we will further require the trust that the compilers do not contain any of the
same self-replicating attacks. These levels of trust give us the ability to test
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and verify the compilers.

The technique is often used with a self-hosted primary compiler and a
secondary compiler. In this case the primary compiler is the production
compiler we want to create, while the secondary compiler is a more
minimal trusted compiler, that we for some reason trust. This secondary
compiler might not have the same positive abilities as the primary
compiler, however it needs to be capable of compiling the primary compiler
correctly. This ability might require the secondary compiler to be able to
correctly use any language extensions and similar used in the primary
compiler, it is in many cases not enough for the secondary compiler to
simply be able to compile the same language.

6.1 Testing a compiler for deterministic output

As we for DDC require the compiler to create reproducible results, there
might be a need to manipulate the E variable or the compilation process’
dependence on the E variable, see Section 3.1, so that the results are actually
stable. This depends on the compiler and what environmental variables
it will use for the build process of the compiler. Some typical and often
solvable problems are listed in Section 5.2.

A process to test if the compiler is reproducible is a regeneration check [46].
This is simply done by building the compiler that is to be verified multiple
times in sequence and checking that the output is identical. If the output is
identical, it is likely that the compiler is reproducible. Note that we cannot
immediately exclude the possibility that these identical results happened
by chance and that there still are problems with the compiler relying on the
random or pseudo-random behaviour of the environment. If the output is
not identical, tools such as diffoscope [7] can be of help to attempt to locate
the differences. Be aware that the reproducibility of the compiler does not
exclude a self-replicating compiler attack.

6.2 DDC for the self-hosting compiler

This is the technique Wheeler wrote about in [45] and is the simplest and
perhaps most common way to perform DDC.
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To perform DDC to create and verify a self-hosting compiler we require
two compilers, or interpreters, capable of compiling, or interpreting, the
compiler we want to create. We will refer to these two compilers as the
grand-parent compilers. As the compiler we want to create will use another
version of itself as the parent compiler we will only require the source
of one compiler, the compiler we would like to create. Nevertheless, we
require that this compiler we want to create is able to deterministically
compile itself. If the compiler creates different executables every time we
run it the technique becomes very difficult, though perhaps not impossible
as attempts can be made through the use of tools such as diffoscope [7]. We
will here assume, for simplicity, that we will have the exact same binary
output. This is usually easily and efficiently checked through the usage of
cryptographic hashing algorithms.

The technique itself is fairly simple for a self-hosting compiler. We will
have two grand-parent compilers which we will use to create two parent
compilers using the source code of the compiler we will ultimately want to
create and verify. These two parent compilers will now not be identical, or
at least it is extremely unlikely that they are. This is because two different
compilers will produce different output for any file as they have different
code generation and the optimisations used are likely to be different.
Nevertheless, this should give us two parent compilers that function the
same way, even though they are not identical.

These two parent compilers will then be capable of compiling the source
code again. Once this is done, we can compare the results. If the results are
identical, it means that the grand-parent compilers either contain the same
self-replicating attack or no self-replicating attack. If we can trust that the
grand-parent compilers do not contain the same self-replicating attacks, we
can see that the created compilers contain no self-replicating attacks.

Note that the absence of a self-replicating attack in the final compiler does
not mean that either parent compiler or grand-parent compiler are entirely
clean from self-replicating attacks, unless they are also identical to the
newly created, verified, compilers. This is because the parent compilers
or grand-parent compilers can still contain self-replicating attacks that are
only triggered under specific circumstances, this only shows that we have
not triggered any self-replicating attacks.

If the newly created compilers are not identical, we can not easily say which
grand-parent compiler contains malicious behaviour. However, the lack

39



Figure 6.1: DDC on self-hosted compiler
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of reproducible results mean that either compiler is inserting some self-
replicating artefact into the created parent compiler, that makes the parent
compiler behave differently. This should never happen with a deterministic
parent compiler, and could be caused by either a malicious grand-parent
compiler or, perhaps unlikely, a self-replicating bug in the grand-parent
compiler.

See Figure 6.1 for a graph illustration of this technique using the following
symbols:

• c1
GP and c2

GP: the grand-parent compilers of the compiler we want to
create and verify.

• s: the source code of the parent compilers and the compilers to verify.

• c1
P and c2

P: the parent compilers of the compiler we want to verify.
These will not be identical.

• c1
V and c2

V : the final compilers. If these final compilers are identical:
we have verified the results.

• 11, 12: compilation stages from the grand-parent compilers.

• 21, 22: compilation stages created from the parent compilers.

6.3 DDC for the general case

Attacks such as the compiler trap door is possible, even when the compiler
is not self-hosted, we therefore have to be able to create and verify
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compilers that are not self-hosted.

This technique gives us a general case of DDC, where the parent compiler
and the final compiler are two different compilers with different source
code. To do this we require the source code for both the parent compiler
and the final compiler that is to be verified. Nevertheless, the technique
is mostly identical to the technique as shown previously. This general
technique was described by Wheeler in [46].

As we have the source code for two different compilers in the general case,
we only require the parent compiler to be able to deterministically compile
the final compiler. It is not necessary for the grand-parent, as before, or the
final created compiler to be deterministic.

As before, identical finally verified compilers does not mean that either the
parent compiler or the grand-parent compilers are free from self-replicating
attacks, it just means that we did not trigger any such attacks. Also as
before, identical final compilers means that the grand-parent compilers
either contain the same self-replicating attacks or no self-replicating attacks.
If we can trust that both grand-parent compilers do not contain the same
self-replicating attack, we can trust that the final, verified, compilers also
do not contain any self-replicating attacks.

See Figure 6.2 for a graph illustration of DDC for the general case using the
following symbols:

• c1
GP and c2

GP: the grand-parent compilers of the compiler we want to
create and verify.

• sP: the source code of the parent compilers.

• sV : the source code of the compilers we want to verify.

• c1
P and c2

P: the parent compilers of the compiler we want to verify.
These will not be identical.

• c1
V and c2

V : the final compilers. If these final compilers are identical,
we have verified the results.

• 11, 12: compilation stages from the grand-parent compilers.

• 21, 22: compilation stages created from the parent compilers.
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Figure 6.2: General DDC for a compiler that is not self-hosted
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6.4 DDC with n > 2 grand-parent compilers

This is a technique that was not detailed by Wheeler, however it was briefly
mentioned as a possibility [46]. This is as, far as I know, the first description
of this technique.

The technique is only slightly different from DDC as written about in
Section 6.3. With n > 2 grand-parent compilers it is possible to increase the
trust by using three or more grand-parent compilers. This gives us some
added abilities when compared to regular DDC.

Given positive trust in each grand-parent compiler we can make use of
parallel trust combinations to increase the trust in the created compiler.
This intuitively makes sense, as it would require an attacker to have
inserted the attack in more grand-parent compilers as n, the number of
grand-parent compilers, grows.

See Figure 6.3 for an illustration of DDC with n > 2 parent compilers.

One problem when n = 2, that is regular DDC, is that the technique cannot
pinpoint which grand-parent compiler created an eventual corrupted
result. Even though the technique would often be used with one trusted
and one production compiler to verify, the technique gives no guarantee
which of the two compilers actually created the corrupted compiler. The
technique can only tell us that the compilers either agreed or disagreed on
the final results.

Assuming similar levels of trust in every grand-parent compiler, n > 2
grand-parent compilers and that there is one result that differs we can use
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Figure 6.3: General DDC with n > 2 grand-parent compilers
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this to our advantage: as n grows it will be more and more likely, given
the combined parallel trust combinations of the grand-parent compiler that
create the identical results, that the compiler with the differing results is the
compiler that created the corrupted result.

See Figure 6.4 for an example of using DDC with three grand-parent
compilers to show which compiler corrupted the results. Here we can
see the red dotted line leading into the comparison to visualise a different
result, this path leads back to the compiler c2

GP. It is therefore most likely
that c2

GP inserted the self-replicating behaviour, given similar levels of trust
in the three grand-parent compilers.

It is important to note that we cannot be certain that this grand-parent
compiler is the only one capable of corrupting the results, however at the
time of the running of the DDC process it was the only one that did corrupt
the result. We can therefore not, with certainty, say that the other grand-
parent compilers are necessarily without any self-replicating behaviour.

Further it is also important to be aware that we cannot automatically say
that the one grand-parent compiler producing a differing result, is the one
that has inserted the self-replicating behaviour. It is a possibility that all
the other compilers inserted the self-replicating behaviour and that this
compiler is actually the only one that did not. It is therefore still very
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Figure 6.4: DDC with n = 3 grand-parent compilers. The red path signifies
the insertion path of self-replicating behaviour.
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important to use grand-parent compilers with some positive trust and it
is also important that these compilers are diverse for the sake of avoiding
collusion as discussed in Section 2.1.3.

The downside to DDC with n > 2 grand-parent compilers is that it requires
more than two diverse and trusted compilers, this can in certain cases be
difficult to find as even having only two diverse compilers to compile the
parent compiler can prove problematic.

In conclusion the technique of DDC using n > 2 grand-parent compilers
seems to be promising. It allows usage of parallel trust combinations to
increase the trust in the final created compiler and, in certain cases, it can
also show us which compiler has inserted a self-replicating attack.
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Chapter 7

Implementation of a
self-replicating compiler attack

In this chapter I will explain one possible implementation of a self-
replicating compiler attack, similar to a compiler trap door or trusting trust
attack. I will begin by explaining what a quine is and how to implement a
quine. I will then show the implementation of a self-replicating compiler
attack, using the same techniques used in the creation of a quine.

7.1 Choice of language and compiler

In this section I will discuss the choice of language and compiler for my
implementation of the attack.

7.1.1 Requirements

There are multiple languages and compilers I can use to implement the
attack. One of the main requirements for me is that the compiler is self-
hosted. This means that I require the language compiler to be compiled
using itself as the compiler, if the compiler is not compiled using this
compiler it would be harder to implement a self-replicating attack as
it would require the attack to be able to modify multiple compilers.
It is in fact possible to do this attack against all compilers capable of
compiling other compilers, however to be able to have an infinite cycle of
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perpetuation of the attack we require some sort of cycle. The easiest cycle to
create is one where we compile the compiler using itself, and it is therefore
the cycle we aim to create.

It is perhaps more interesting to show the attack in the setting of a major,
or the major, compiler for a language. This is to show that the attack is
not limited to small specifically written compilers. To further be able to
detect the attack using Diverse Double-Compiling (DDC), I will add two
secondary requirements:

It also has to be possible to deterministically compile the compiler for the
language I want to implement the attack in. If there is different output for
every compilation of the compiler it will be impossible to use DDC as it, as
a technique, relies on deterministic compiler output.

I want at least one completely different secondary compiler, capable of
compiling the compiler to be verified. This requirement is to be able to
show that the technique of DDC works with a compiler with a completely
different code base than the verified compiler. If I did not have a different
secondary compiler I would have had to write a secondary compiler to
use, or use an earlier known clean compiler. It is possible to write a
secondary compiler for most languages, especially a basic compiler that
contains no advanced features not required by the language specification
or for compiler extensions needed by the compiler to verify. Nevertheless,
writing this secondary compiler could be time-consuming, which is why I
have avoided doing this here.

Using a known clean compiler, that is one that has not been subjected to
the specific attack, it is also a possibility to show DDC. However, this might
limit us if we want to use DDC to give us an added feeling of safety with
regard to attacks other than our own. As I am in control of my attack,
I could therefore always create a version without the attack. A positive
effect of DDC is to force a would-be attacker to attack multiple different
compilers with a self-replicating attack to hide the attack from verification.
I would therefore like to show the technique of DDC using as diverse
compilers as possible.

The language compiler should not be too slow to compile, to enable
iterative development. It is a clear negative, when attempting to show
multiple techniques requiring the recompilation of the compiler if the main
compiler takes very long to compile. A fast compiler will be both a positive
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for me, when writing the attack and showing the detection of it, and for
anyone who would like to reproduce the work. Therefore, I am very
positive towards a faster compiler.

Further it is a positive, if the language is not a language which already has
been used previously for examples of DDC in an academical context. As
there is very little written on DDC, this only eliminates C as the implement-
ation language.

To sum up the requirements:

• The compiler should be self-hosted.

• The compiler needs to be able to deterministically compile itself.

• I want diverse working compilers to be able to perform DDC.

• I want a language that is not C.

• I prefer a major compiler for the language as the compiler to infect
and verify.

• I prefer a language with a compiler that is not too slow to compile.

I will in the following sections discuss the languages a few possible
languages and their suitability for the implementation of this project.

7.1.2 The Rust Programming Language

The first language I considered using for the implementation of this project
was the Rust programming language [40]. The Rust language is a fairly
new programming language, with its first stable release in 2015 [2]. Rust is
a systems programming language with some interesting static properties to
help defend against memory leaks and similar issues. Rust is an interesting
language and has a self-hosted compiler, capable of deterministically
compiling itself. The language also has a secondary compiler, capable of
compiling the primary language compiler [1]. It is noteworthy that this
secondary compiler is not a full compiler for the language, it does not yet
enforce all the rules such as borrow-checking. There is no known secondary
compiler for the Rust language supporting the full language specification.
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Nevertheless, there is one major drawback for Rust at this point in time,
the compilation times are slow. It is very possible that this will be
improved eventually. Nevertheless, it currently took about 30 minutes on
my workstation to compile the Rust compiler.

Rust is therefore a promising language for this project, however the long
compilation time of the Rust compiler is a major drawback.

7.1.3 The Haskell Language

The second language I considered was Haskell [14]. Haskell is a functional
programming language with a large popularity in academic circles. Further
it sounds reasonable that a functional language with a focus on functions
without side effects, should be able to create deterministic compiler output.
Unfortunately the most common compiler, the Glasgow Haskell Compiler
(GHC), does not produce deterministic compiler output and I can therefore
not use GHC for DDC [10]. This ruled out Haskell for this project.

7.1.4 The Go Programming Language

The third language to be considered was the Go language [38]. This
language is another new systems programming language which originated
from Google engineers Robert Griesemer, Rob Pike and Ken Thompson in
September, 2007 [12]. The first stable release of Go came later, in 2012 [13].

Go is a modern language, with memory management through garbage-
collection and both static and structural typing. The language implements
type inference and was created with built-in concurrency features such
as channels and goroutines. It is designed for fast compilations, and to be
simple and avoid the unnecessary clutter and complexity found in many
other languages.

The Go language’s main compiler is self-hosted and can produce determ-
inistic files, this allows us to use DDC to verify the created files. There are
also multiple other compilers available for the Go language such as: gccgo,
a front end for the GNU project C and C++ compiler (GCC), and llgo, a Low
Level Virtual Machine (LLVM) front end.

It is a curious coincident that this language, created in part by Ken
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Thompson which roughly 34 years ago wrote Reflections on Trusting
Trust [42], contain all these features, making it ideal for this project. I
will because of all of this, use the Go programming language to create an
implementation of a self-replicating compiler attack in this thesis.

7.2 Quine

In this section I will explain what a quine is and how to implement a quine
in the Go programming language [38]. We will later use the techniques
from the implementation of the quine to implement the self-replicating
attack.

7.2.1 What is a quine

A quine, named so by Douglas Hofstadter after the American logician
Willard Van Orman Quine, is an indirect self-reference [15]. An object
referring to itself indirectly. An example of a sentence that indirectly
references itself could be:

‘Is a sentence fragment’ is a sentence fragment. ([15])

This is self-referential as the former half of the sentence is replicated in the
latter half and the latter half describes the former half. Another example of
such a sentence follows:

‘Yields a false statement when preceded by its quotation’ yields
a false statement when preceded by its quotation. ([15])

A quine in computer science is a program that, without any extra inputs,
can output its own source code [15]. This means: when you run a quine
you will get the exact source code of the program as the only output of
the program. If you have never written such a program, I will, as Ken
Thompson did, suggest you attempt this before you go on to read about
how to do this:
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Listing 7.1: ‘Hello, World!’ in Go

package main

import " fmt "

func main ( ) {
fmt . P r i n t l n ( " Hello , World ! " )

}

If you have never done this, I urge you to try it on your own.
The discovery how to do it is a revelation that far surpasses any
benefit obtained by being told how to do it. ([42])

7.2.2 Example implementation of a quine in Go

Implementing a quine is, as many things in life, easy if you know the
techniques used. Perhaps the main problem to avoid is the infinite loop
created if you were to simply attempt this straight up. An example of a
simple program in the Go language is shown in Listing 7.1. This program
will output the text ‘Hello, World!’.

The trivial attempt at writing a program that outputs this would be to
simply create a program that outputs this text as shown in Listing 7.2.
Nevertheless, this would not work as the output would be the source
code of the original program and not the source code of the new program.
Further I cannot infinitely add the new content into the string sent to the
Println function. This will never be a working quine and I therefore require
a slightly different approach to properly implement a quine.

I will use a technique to implement a quine where I include almost the entire
program in a string variable. I will then use this string variable twice to
construct a string that is the same as the original program: once for the
code of the program, except the content of the variable, and once to add the
string itself to the string variable to complete the code.

The difference between the content of the string and the program, is that
I will replace the content of the string variable, in the string variable, with
‘%c%s%c’ to avoid the impossible infinite recursion. This allows us to later
insert the delimiting string characters and the string itself, through a call to
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Listing 7.2: A non-functional quine attempt

package main

import " fmt "

func main ( ) {
fmt . P r i n t l n ( ‘ package main

import " fmt "

func main ( ) {
fmt . P r i n t l n ( " Hello , World ! " )

} ‘ )
}

a printf formatting and printing function.

The new and working quine will be implemented as shown in Listing 7.3.
This program correctly outputs its own source code when run.
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Listing 7.3: A functional quine in Go

package main

import " fmt "

func main ( ) {
s t r := ‘ package main

import " fmt "

func main ( ) {
s t r := %c%s%c
fmt . P r i n t f ( s t r , 96 , s t r , 96)

}
‘

fmt . P r i n t f ( s t r , 96 , s t r , 96)
}

7.3 Implementation of a self-replicating compiler at-
tack

In this section I will demonstrate a self-replicating attack attack, against the
Go language compiler. I will implement the attack against the currently
most recent version of the Go compiler, this is as the time of writing
go1.11beta1, this implementation will not work against previous versions,
without modification, because of changes in the source code between the
versions.

First I will show how I can, with a simple modification, modify the
compiler to recognise and modify the hello.go program from Listing 7.1.
Then I will show how I can use our earlier knowledge of quines to make
this into a self-replicating compiler attack. When this is done, I will have a
working Proof of Concept (PoC) of a self-replicating attack.

7.3.1 Discovering an insertion point in the Go compiler

To insert the attack I am required to find an insertion point. There are
multiple possible ways to insert the attack, but the requirements of a
practical insertion point could be as follows:
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• The attack needs from this point to have a way to detect if it is the
program I want to modify. This is, most probably, easiest done by
being able to read the source code, however I can also parse the
abstract syntax tree (AST), recognise assembler output from the back-
end or the intermediate representation (IR) from the front-end or
use other data. It is important to remember that this attack can be
detecting this in many ways and not expect it to behave only in one
specific fashion.

• The attack also needs a way to modify the behaviour of the program,
so that it can insert malicious behaviour and re-insert itself on
recompilation of the compiler to ensure self-replicating behaviour.
This can, similarly as above, be done in a number of ways. The
perhaps easiest way, however, is here to be able to modify the source
code that is to be read.

To make the attack as simple as possible and implement the ideas used
in the creation of a quine, I have chosen to make the attack recognise and
modify the source code read by the compiler. Ideally, I therefore want a
function before the scanner of the compiler. This function should allow me
to read the source code being sent to the scanner and modify it as I see
necessary.

I found this behaviour in a function named Parse1. This function takes a
file handle: src. It also takes certain data about the opened file in base, an
error handler and a pragma handler. The function creates a parser and then
sends the received arguments on to this parser. The parser again creates a
scanner. As the function is called for all compiled files it seems a reasonable,
and simple, place to insert the attack.

7.3.2 Modifying the ‘Hello, World!’ program

To start our attack I will implement a piece of code that modifies the hello.go
program from Listing 7.1. The modification will be to change the output of
the program from ‘Hello, World!’ to ‘There is a trap door.’. I will use some
helper functions to read and write files, named readFile and writeFile, as
I lack certain library functions for this in the bootstrapped Go compiler.
These functions can be found in the complete code listing, in the source

1In go/src/cmd/compile/internal/syntax/syntax.go
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code repository.

The code will detect if the opened file is the file hello.go, only then will it do
any changes. If not it will send on the file as usual to the parser. On any
errors, for example an Input/Output (IO) error, I will also leave this hack
and send the actual unmodified file to the parser.

Once the correct file is discovered I will read the file to a string, modify the
content of the string and write this to a new file in the same directory. I will
then open this modified file and send it to the parser instead of the original
file. After running the parser with the modified file, I will remove the
modified file to hide this attack. The attack will at this point look something
like in Listing 7.4.

I will also have to add the import of the strings-library at the top of the file
to use these functions, and I will have to remember to also insert this when
I am later implementing self-replicating behaviour.

This attack will, when inserted into the Parse function, modify the hello.go
‘Hello, World!’ program into a program printing ‘There is a trap door.’ This
shows how simple added code in a compiler can modify a specific program.

7.3.3 Replicate into a new compiler

To replicate the attack into the compiler, when it compiles itself, I use an
approach similar to the one used in the quine earlier. I will add the added
code into a string variable, which the modified version of the function will
add into the modified file twice. To facilitate the initial compilation of the
program, I also want to avoid modifying an already modified version of
the file.

Initially I need to check for the correct file and then read the file. This is
the file I currently have open, this code will be similar to the code from the
modification of the ‘Hello, World!’ program earlier. See Listing 7.5.

Now that I have code to read the file, if it is syntax.go, I now want to
add code to modify the file. However, there is a problem: as previously
mentioned, I need to avoid adding the code to a file that has already been
modified. If I were to add the code to an already modified file, this could
be problematic as it would duplicate the code. Nevertheless, avoiding this
is quite simple. If I can look for some text that only exists in our modified
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Listing 7.4: Compiler modification to modify the ‘Hello, World!’ program

i f s t r i n g s . Contains ( base . f i lename , " h e l l o . go " ) {
// Read o r i g i n a l f i l e .
f i l e C o n t e n t , e r r := r e a d F i l e ( base . f i lename )
i f e r r != n i l {

goto h a c k _ f a i l e d
}

// Modify content .
modContent := s t r i n g s . Replace ( f i l e C o n t e n t ,

" Hello , World ! " , " There i s a trap door . " , 1 )

// Write modified f i l e .
modPath := base . f i lename + " . 2 "
e r r = w r i t e F i l e ( modPath , modContent )
i f e r r != n i l {

goto h a c k _ f a i l e d
}

// Open modified f i l e to read .
newFile , e r r := os . Open( modPath )
i f e r r != n i l {

goto h a c k _ f a i l e d
}
defer os . Remove ( modPath )
defer newFile . Close ( )

// Parse using the modified f i l e .
var p parser
p . i n i t ( base , newFile , errh , pragh , mode)
p . next ( )
re turn p . f i l e O r N i l ( ) , p . f i r s t

}
h a c k _ f a i l e d :

Listing 7.5: Compiler modification to detect the file we want to modify

i f s t r i n g s . Contains ( base . f i lename ,
"cmd/compile/ i n t e r n a l /syntax/syntax . go " ) {
// Read the o r i g i n a l f i l e .
content , e r r := r e a d F i l e ( base . f i lename )
i f e r r != n i l {

fmt . P r i n t l n ( " Fa i l ed to read o r i g i n a l f i l e . " )
goto h a c k _ f a i l e d

}
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file, and only modify the file if it does not exist, I will have a solution to this
problem.

This can be done in multiple ways, but the perhaps simplest solution to this
problem is to look for a random string, that only exists if I already modified
the file. If the code to look for the string is there, I will find the string. If the
code is not there, the file is unmodified by us. Therefore, an effective and
elegant solution is to look for a randomly generated string.

When this is done, I first want to add the strings-library into the import
statements.

After doing this, this I will create the string variable containing the
additions I want to add into the modified file. I will do this similarly to
how I previously did it in the quine. When doing this I will use the variable
modifiedString, which is not yet created. Imagine that this variable will hold
all the code that is to be added, like the variable used in the example of a
quine.

When I have done these things I can write the modified file and open it
again for reading, as in the previous ‘Hello, World!’ hack. See Listing 7.6
for a listing of an example of the code needed to modify the compiler.

Once I have done this I can add the modifiedString variable right above all
the newly added code and copy all the code into this as a multi-line string
(except for the variable itself).

7.3.4 Conclusion

With this I have shown a working implementation of a self-replicating
attack, similar to the trusting trust attack. The attack is perhaps easier to
do than many would believe, yet not trivial to discover. A patch file for the
full attack is available here 2.

Some things could, however, be done to make it harder to discover. Where
perhaps the most obvious way to discover this attack in its current state
would be to discover the creation and deletion of a file. Here it is important
to note that this is not the only way to implement this attack and that the
attack could trivially be done without writing to a file. The file writing

2https://github.com/yrjan/untrustworthy_go/blob/master/untrustworthy_go.patch
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Listing 7.6: Compiler modification to self-replicate

// Do not modify the f i l e i f i t i s already modified .
i f ! s t r i n g s . Contains ( content , "sNzrBzaIxgSNMmMuPaE3" ) {

// Modify content .
content = s t r i n g s . Replace ( content ,

" \" io \"\n\ t \" os \" " ,
" \" io \"\n\ t \" os \"\n\ t \" s t r i n g s \" " ,
1 )

addi t ion := fmt . S p r i n t f ( " } ( ) \ n\n\tmodi f iedStr ing "
+ " := %c%s%c\n\n\ t%s " ,
96 , modif iedStr ing ,
96 , modif iedStr ing )

content = s t r i n g s . Replace ( content , " } ( ) " ,
addit ion , 1 )

// Write modified content .
modPath := base . f i lename + " . 2 "
e r r = w r i t e F i l e ( modPath , content )
i f e r r != n i l {

fmt . P r i n t l n ( " Fa i l ed to wri te modified f i l e . " )
goto h a c k _ f a i l e d

}

// Open modified f i l e to read .
newFile , e r r := os . Open( modPath )
i f e r r != n i l {

fmt . P r i n t l n ( " Fa i l ed to open modified f i l e . " )
goto h a c k _ f a i l e d

}
defer os . Remove ( modPath )
defer newFile . Close ( )

// Parse using the modified f i l e .
var p parser
p . i n i t ( base , newFile , errh , pragh , mode)
p . next ( )
re turn p . f i l e O r N i l ( ) , p . f i r s t

}
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approach was a simple and useful way to test the attack, and therefore the
one I chose. For example, one could instead read directly from the created
string to avoid this obvious place of detection.

In the Chapter 8 I will further explain how we can use DDC to discover
such an attack.
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Chapter 8

Implementation of DDC

In this chapter I will show an implementation of Diverse Double-
Compiling (DDC) with n > 2 grand-parent compilers, and use it to show
of DDC can work. Not only to discover the specific attack I implemented
in Chapter 7, but also to show which grand-parent compiler introduced the
self-replicating attack.

8.1 Go compiler reproducibility

Some knowledge about the Go compiler is in order, before I show how
we can implement DDC. The Go compiler is a multi-stage, self-hosted,
compiler. This means that the compiler is first built using an available
compiler, also known as bootstrapped, then the compiler is built again from
this newly created compiler [11].

This is a common technique used in other compilers as well, such as the
GNU project C and C++ compiler (GCC). A multi-stage build process
works as both a test of any changes to the compiler, and to add any new
optimisations in the created compiler. For us, this means that we don’t have
to manually do two stages of compilation for DDC, as the build process
already creates a parent compiler which is then used to create the final
compiler. As we do not have to start multiple processes I will simplify the
testing process for the Go compiler to look similar to figure 8.1, however
keep in mind that this is only a simplification and that there are actually
multiple compilations for each step here.
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Figure 8.1: Basic DDC for the Go compiler with 2 grand-parent compilers.
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This does not get us the entire way though. When attempting to reproduce
the Go compiler there is one major problem: the Go compiler will fail to
reproduce if it is not compiled from the same working directory every time.
This is simply solved by making sure that we always compile the compiler
from the same directory.

We also have to be aware of what we are to test. With the Go compiler the
solution is also here rather simple. We have to remove two directories:

• pkg/obj: this directory contains cache files that are seemingly different
on every run of the build process.

• pkg/bootstrap: this directory contains files created during the first stage
of compilation. This is only reproducible if we use the same grand-
parent compiler.

In my experience all other created files have been reproducible, and we can
therefore simply check the hashes of all these files. The Go compiler is still
fully functional with these directories removed.

Following these guidelines the Go compiler passes the regeneration check
from Chapter 6 and can reproducibly compile on the same system. I have
not attempted to make the compiler fully reproducible across all systems,
as that is not necessary to perform DDC locally.

8.2 Set-up for DDC

For this implementation of DDC I will implement the technique using three
grand-parent compilers. One I will have infected with the self-replicating
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Figure 8.2: DDC set-up for verification with the three grand-parent
compilers.
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attack implemented in Chapter 7. The three grand-parent compilers chosen
for the implementation of the attack are the following:

• Go 1.10.3: as of the time of writing this is the current stable release of
the official Go compiler. This compiler has been picked as it is known
that the self-replicating attack in question is not effective against this
version of the compiler, it can therefore not be infected with the attack
in question.

• Go 1.11beta1 (with added self-replicating attack): this compiler is the
latest release of the official Go compiler. It has been infected with
the self-replicating attack from Chapter 7.

• GCC 8.1.0: as of the time of writing this is the current stable release
of GCC. As the compiler is based on a completely different code base
it has been picked as an alternative implementation of a Go compiler,
the differing code base is the reason it can also not be infected with
the attack in question.

With these three compilers we have two trusted compilers, that are known
to be clean from this specific attack, and one infected compiler. Further we
will use the original unmodified source of Go 1.11beta1 as the compiler to
be verified, as this is the only released version of the Go compiler that can
be infected with this specific self-replicating attack. Figure 8.2 shows this
set-up for performing DDC.

In the following experiment it is now to be expected that when performing
DDC, the compiler created from the two compilers not infected with
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this attack will be identical, while the infected compiler will produce
different results. To make sure the results are reproducible when no self-
replicating attack is activated I will use the guidelines for a reproducible
Go compiler from Section 8.1. To check for bit-for-bit identical results I
will use a cryptographic hashing function, SHA-256, on all files created
by the compilation, except for the files that are to be removed as they are
non-reproducible. The SHA-256 function ensures that it will be extremely
unlikely that any non-identical files will return the same results, however
files that are bit-for-bit identical will return the same exact results.

8.3 Results and conclusion

During the process I have generated files containing all the resulting file
names and the cryptographic hashes for each file, with this I can compare
the results. If we again use the SHA-256 function to create the hashes from
these files containing all hashes we will get a new hash, one for all files
in a single resulting build of Go 1.11beta1. These hashes are shown in
Table 8.1. As it has not been tested that the results are fully reproducible
between different systems, these specific hashes are unlikely to be identical
if recreated on another system. Nevertheless, the pattern that the two
compilers without the self-replicating attack are identical, while the one
containing the attack is different, should remain.

These results show that the results from the paths with Go 1.10.3 and GCC
8.1.0 as the grand-parent compilers are identical, however the results with
the infected Go 1.11beta1 as the grand-parent compiler differ. This shows
that the technique of DDC with n > 2 parent compilers correctly work
to identify which compiler has inserted the self-replicating attack. See

Table 8.1: Results of DDC for all files.
Grand-parent compiler SHA-256 hash

Go 1.10.3 55609344bfe1b34f6567b8b2a3a1e213
37ced5bf7925bec3462b0bb76a72ddba

Go 1.11beta1 (infected) 03d91ac0da2acbaa4db406e1d3428a74
81d46f9876aacdc53154f8506883f2a0

GCC 8.1.0 55609344bfe1b34f6567b8b2a3a1e213
37ced5bf7925bec3462b0bb76a72ddba
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Figure 8.3: DDC results for test with the three grand-parent compilers.
Red signifies the path that we have detected as inserting self-replicating
behaviour.
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Figure 8.3 for an illustration of this.

I have here shown that we can identify which compiler has inserted a self-
replicating attack using a variant of DDC. Here I have used the technique to
detect and find a specific attack, and it is important to note that I cannot rule
out the existence of any other attacks in the results created by the Go 1.10.3
compiler and the GCC 8.1.0 compiler. Nevertheless, the results do increase
the trust in this created compiler, given my positive, but not ultimate, trust
in these compilers. However, with only two compilers delivering the same
results, it does not inspire more trust than what regular DDC would. If
we had more than two diverse compilers delivering the same results that
would help inspire extra trust, when compared to regular DDC.
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Chapter 9

Conclusion and future work

9.1 Conclusion

In this thesis I have looked at two methods for increasing trust in and
ensuring that source code and compiled code are as equivalent as the
compilers allow. One, reproducible builds, is for distributing verifiable
compiled code. This, however, has a weakness to compiler attacks as
they can disrupt the verification process. The other technique, Diverse
Double-Compiling (DDC), has the ability to increase the trust that these
attacks have not happened by closing down the ability to perform self-
replicating compiler attacks. Through DDC we can ensure that the
compilers correspond to their actual source code, which we can review.

I have discussed the famous compiler trap door, or trusting trust, attack [20,
42]. This malicious compiler attack can, in addition to the ability to do
other malicious modifications, self-replicate by detecting and infecting the
compiler, upon compilation of the non-infected compiler source code. This
ability allows the attack to survive recompilations of the attacked compiler.
There are no documented instances of this attack ‘in the wild’, however
the lack of documented instances does not mean that the attack cannot
happen or has not happened. There have been other documented malicious
compiler attacks such as W32/Induc and XCodeGhost, which have been seen
‘in the wild’ [18, 44]. Malicious compiler attacks have been shown to be a
real threat, with potentially major consequences, if the malicious compiler
reaches software distributors. The attacks are designed in such a way
that a software distributor can, and has in the past, unknowingly spread
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malicious software [18].

I have discussed how software can be maliciously subverted, by abusing
the gap between source code and compiled code. We saw how this gap
can exist, as comparing source code and compiled code for equivalent
behaviour is actually an undecidable problem. That we cannot do this
comparison create problems for open-source software, which uses the
ability to review the source code to inspire more trust in the software.

If we do not have access to the source code, we are limited to the trust we
have in the distributor of the software and the information we can gain by
reverse engineering the software.

I divided the ways malicious compiled code can be created into three
categories:

• Pre-compilation: malicious code can be created by modifying the
source code before the compilation process. It is here important to
see that an entity with malicious intent might distribute malicious
compiled code, and at the same time the entity can distribute non-
malicious source code. This can create the appearance that the
compiled code is non-malicious.

• Mid-compilation: malicious code can be created from a malicious com-
piler that maliciously misrepresents the source code and creates this
malicious compiled code, code that does not accurately preserve the
semantics of the source code and also contain malicious behaviour.

• Post-compilation: malicious code can be created by modification of the
compiled code itself.

For software with available source code, typically open-source software,
we looked at the technique known as reproducible builds. This technique
utilises deterministic compilations to allow for universally reproducible
compiled code, which allows for independent review of the results [33].
This technique is already utilised by multiple major open-source projects.
The coverage is, however, still not complete for all distributed software
in many of the projects [16, 28, 32]. Through this method the end-user
can have improved trust in the compiled code, granted that trusted third
parties are verifying the results, by utilising parallel trust combinations.
Nevertheless, if the compiler used for the verification process has been
infected with malicious behaviour, we cannot guarantee for the results.
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DDC is a technique that uses two compilers to bootstrap a deterministic
compiler and through this allows for the creation of a trusted compiler,
trusted to be free from either specific, or all, self-replicating behaviour [45,
46]. This trust is based on the trust that the two grand-parent compilers
used for the bootstrapping purpose does not contain either the same
specific, or any, self-replicating attack. If the results created from the
two bootstrapping compilers are different, this means that one of the two
compilers have inserted some sort of self-replicating behaviour. Further, if
both bootstrapping compilers are believed to be of equal trust, we are at an
impasse: we cannot say which of the two compilers have introduced this
self-replicating behaviour.

In this thesis I describe and demonstrate a not previously described
variation of DDC that uses more than two compilers for the bootstrapping
purpose. This allows for increased trust, when compared to DDC using
only two compilers, by utilising parallel trust combinations. This can also,
in some situations, add the ability to detect which compiler has introduced
an eventual self-replicating attack. If the results from one bootstrapping
compiler differs from the results of the other compilers, and they are of
similar trust, then it is likely that the compiler that differs is the compiler
that has been created with self-replicating behaviour.

I presented a working Proof of Concept (PoC) implementation of a self-
replicating compiler attack against the official Go compiler, created using
techniques similar to those used to create a quine. A quine is a program
that reproduces itself upon execution. The demonstrated attack can survive
multiple recompilations of the compiler, without compiling infected source
code, by using reinfecting behaviour found in the created executable. This
not only shows how such an attack might work, but also how simple it can
be implemented.

I showed the actual process of using DDC to verify the Go compiler, using
three bootstrapping grand-parent compilers. One of the compilers had
been infected by the self-replicating compiler attack I implemented. Using
this variant of DDC with n > 2 grand-parent compilers I was able to
correctly identify which compiler had inserted the self-replicating attack.
Because only two compilers created the same results in this situation,
the trust gained by parallel trust combinations in this instance would not
increase outside the scope of regular DDC showing the absence of detected
self-replicating behaviour.
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9.2 Future work

The technique of DDC using more than two grand-parent compilers, as
detailed in Section 6.4, for increased trust is one that can be further
investigated. Being able to use many, diverse, compilers for this task can
greatly improve the trust in the created and verified compiler.

Another avenue of possible research would be to look at the possibility,
however unlikely, of self-replicating artefacts in compilers created by bugs,
as mentioned in Chapter 6. It is unknown to me if any such artefacts exists
in any compilers today, but it could be interesting to look at this problem to
determine the likelihood that any unidentified self-replicating behaviour is
of a malicious or non-malicious variety.

A problem that DDC faces is the lack of compilers available, capable of
compiling the compilers that are in actual industrial use. David A. Wheeler
suggests some method for increasing this diversity such as diversity in
compiler implementation (different compilers), diversity in time (different
versions of compilers), diversity in environment (OS, hardware, etc.) and
diversity in source code input (for example: mutations of source code) [46].
More research into this, both on methods to increase the diversity and
on how eventual self-replicating attacks react to this diversity could be
interesting. This can help further increase the available diversity of
compilers, which could be extremely useful to facilitate DDC with more
than two grand-parent compilers.
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Glossary

AST abstract syntax tree. 22, 28, 53

DDC Diverse Double-Compiling. i, 2, 3, 37–39, 41–44, 46–48, 58–63, 65, 67,
68

GCC the GNU project C and C++ compiler. 48, 59, 61, 62

GHC Glasgow Haskell Compiler. 48

IO Input/Output. 54

IR intermediate representation. 22, 53

LLVM Low Level Virtual Machine. 48

npm Node Package Manager. 10, 11

PoC Proof of Concept. 52, 67

self-hosted compiler is a compiler capable of compiling itself. 22, 23, 37,
38, 45, 59

self-hosting compiler see self-hosted compiler. 39

VM Virtual Machine. 33
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