TRUSTED

COMPUTING
GROUP

EK-Based Key
Attestation with
TPM Firmware
Version

Version 1
October 24, 2025

Contact: admin@trustedcomputinggroup.org

TCG Published



DISCLAIMERS, NOTICES, AND LICENSE TERMS

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE,
OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating
to use of information in this specification and to the implementation of this specification, and TCG disclaims

all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or

any incidental, consequential, direct, indirect, or special damages, whether under contract, tort, warranty or
otherwise, arising in any way out of use or reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is
granted herein other than as follows: You may not copy or reproduce the document or distribute it to others
without written permission from TCG, except that you may freely do so for the purposes of (a) examining or
implementing TCG specifications or (b) developing, testing, or promoting information technology standards and
best practices, so long as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



Contents

1 PUIPOSe . . . . e e 5
1.1 INScope . . . . . e 5
1.2 OutofScope . . . . . . . e 5

2 Introduction . . . . . . .. 6

3 Protocol . . . . . e 8
3.1 Privacy Concerns . . . . . . . . . . e e e e e e e e 9

4 Variant: Firmware Version retrieval independent of AK deployment . . . . . . ... ... ...... 10

References . . . . . . . . . . e 12

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



List of Figures

1 Example TPM Bootloader and Firmware 6
2  Typical AK Attestation Protocol . . . . . . . . . . .. . . 7
3 Protocol Overview . . . . . . . . e 8
4  Protocol Variant Overview . . . . . . . . . 10

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



1 Purpose

This document provides guidance to TPM key-attestation verifiers who would like to receive a trustworthy signal
of the TPM’s current firmware version before trusting the attested key. An example of where this might be
useful is if the verifier wants to include the TPM’s current firmware version as metadata in an Attestation Key
(AK) credential based solely on trust in the TPM’s Endorsement Key (EK).

1.1 In Scope

» Devices with a TPM 2.0 and a known decryption (default) EK public key or credential as described in the
TCG EK Credential Profile [1]

* Verifiers who trust the EK public keys or the issuers of the EK credentials in the target devices

1.2 Out of Scope

« Details about the nature of the AK credential (e.g., whether it is an ordinary certificate, or some other
structure that bestows trust onto an AK)

» The detailed protocol in use dictated by the Verifier (e.g., AK proof-of-possession)
» Data formatting concerns

+ Algorithm-specific details of the EK

« Signing EKs

+ Signing EKs can be used directly with Certify or CertifyCreation instead.

Devices that do not have a trusted EK public key or credential
» The protocols in this document depend on a trusted EK.

» Devices that have firmware-limited EK credentials (see “TPM Firmware-Limited and SVN-Limited Objects
in the TPM Library [2] and “Firmware-limited EKs” in the EK Credential Profile [1])

* The version field in the firmware-limited EK credential is a clearer signal about the TPM’s current
firmware version, so no additional steps are needed in order to ascertain the version.

* When and how the TPM'’s firmware is updated, along with anti-rollback concerns

* How to identify a particular legitimate TPM as the expected TPM in the expected device

» The Platform Certificate Profile [3] provides a solution to this concern.

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



2 Introduction

Version 1.83 of the TPM Library Specification ([2], “TPM Firmware-Limited and SVN-Limited Objects”) describes
a motivation for attesting to the current version of the firmware of a TPM. It introduces a simplified model of a
TPM as a microcontroller with some application firmware that implements the TPM 2.0 external interface, and a
bootloader that verifies and launches the application firmware. Figure 1 depicts this simplified model:

TPM Host System

TPM Firmware

(Application Layer)

TPM 2.0 API

A
Y

TPM bus
(e.g., LPC, SPI)

A
Measure, Verify, Boot

TPM Bootloader

Figure 1: Example TPM Bootloader and Firmware

The ability to attest to the version of the TPM'’s firmware can be of interest any time the TPM'’s firmware is
updated.

Version 1.83 of the TPM Library Specification introduced firmware-limited and SVN (Security Version
Number)-limited objects, which provide a strong cryptographic binding between the firmware version of the
TPM, and keys wielded by that firmware. A TPM with this capability can have a Firmware-Limited EK Credential
(see [1]) that directly vouches for the current version of the TPM’s firmware: if the TPM’s firmware changes,

its Firmware-Limited EK is automatically rotated and the new Firmware-Limited EK is certified by the TPM’s
bootloader.

For TPMs that do not have this capability (e.g., because they implemented an earlier version of the TPM Library
Specification, or because they targeted a platform-specific TPM profile that did not require the feature), it can
still be useful to check the firmware version of the TPM when attesting to Attestation Keys using the EK.

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



Attestation CA

Request AK Credential,

providing EK Credential(s)
Issue Challenge ---------------------- AK Credential

Solve Challenge ------------------------

A 4

Figure 2: Typical AK Attestation Protocol

Figure 2 depicts a typical AK attestation protocol whereby a host with an attached TPM provides sufficient
information for an Attestation CA to issue a credential (e.g., a certificate) to an AK held within its TPM. This AK
can then be used for other attestation purposes (e.g., PCR (Platform Configuration Register) quotes).

The typical AK attestation protocol uses the following steps or similar:

1. Host requests AK credential from CA, providing the AK public key and its EK credential(s).
2. CA sends challenge to Host.

3. Host decrypts challenge (TPM2_ActivateCredential()) and sends the decrypted challenge back to
CA.

4. CA issues AK credential and sends it to Host.

The typical AK attestation protocol leverages TPM2_ActivateCredential () to directly challenge a TPM’s
EK to vouch for a loaded AK, but ActivateCredential does not allow also getting the EK to vouch for the
TPM’s current firmware version.

This document describes an AK attestation protocol based on TPM2_Impoxrt () and TPM2_Certify()
that gets a TPM’s EK to vouch for a loaded AK along with the TPM’s current firmware version. It is
designed to use the same number of network hops as the typical ActivateCredential-based

protocol. As discussed in Clause 3.1, it also supports the same privacy-preserving capability as the typical
ActivateCredential-based protocol.

Verifiers that adopt this new AK attestation protocol can incorporate the attested TPM firmware version in a
number of ways, for example:

» Checking the attested TPM'’s current firmware version against a list of distrusted firmware versions before
issuing the AK credential

* Including the attested TPM’s current firmware version as metadata in the AK credential

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



3 Protocol

In this attestation protocol, the Verifier provisions a restricted HMAC (Hash-based Message Authentication
Code) key into the TPM by encrypting it to a trusted EK, then uses the restricted HMAC key to attest to a
candidate AK along with the TPM’s current firmware version. The attestation carries trustworthy evidence of the
TPM'’s current firmware version, without the Verifier relying on anything but the trustworthiness of the EK. At the
end of the protocol, the Verifier confirms that the AK is resident in a legitimate TPM, which is running a known
firmware version, before issuing a credential to that AK.

The provisioned key is an HMAC key for these reasons:

» Every TPM 2.0 supports HMAC keys.

» The protocol is inherently symmetric: The Verifier performs both key generation and verification.

The flow is depicted in Figure 3. Reference code for this protocol is available at
https://github.com/TrustedComputingGroup/tpm-fw-attestation-reference-code.

TPM Host Verifier

EK credential/pub——> Validate EK credential/pub
Generate restricted HMAC key
Wrap restricted HMAC key
<Importable restricted HMAC key blob | to EK pub
< TPM2_CreatePrimary() (duplicate, inSymSeed)
Import + Load S
restricted HMAC EK handl q
key under EK i
TPM2_Import(parentHandle = ek,
S duplicate, inSymSeed from Verifier)
loadable restricted HMAC key blob >
[€——  TPM2_Load() restricted HMAC key
restricted HMAC key handle >
- Load < TPM2_Create()
reate + Loa
AK (@ » N
-AK pub, loadable AK blob >
< TPM2_Load() AK
AK handle >
Certify AK using TPMZ_Cerhfy(zlg(::z:"::r/% ,:e T;t;cy:ZidTgAC key handle,
restricted HMAC S j
key ——————HMAC-signed Certification (certifyinfo, signature) > AK public key,
——-HMAC-signed Certification—»,
P TTTTTTTTTTTTTTTmmTmTmmmmTmmmmsnmoosmmmosnooosnmooonety (certifyInfo, signature) Verify HMAC-signed Attestation
! NOTE: The TPMS_ATTEST statement produced by Certify() Check firmware Version
) . ) . ! Check certify.name matches AK
includes name, qualifiedName, and firmware Version. .
' Issue AK credential
R Record firmware Version for EK
[ «——AK Credential

Figure 3: Protocol Overview

1. The Host requests an AK credential from the Verifier, providing the EK public key or credential(s).

Note:

In some environments, the Verifier may already have a list of known expected EK public keys.

2. The Verifier checks that the EK is valid and creates a challenge by encrypting an importable restricted
KEYEDHASH sign key to the validated EK. The Verifier provides the challenge to the Host.

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



Note:

The restricted HMAC key is ephemeral for the protocol. It needs to be randomly generated by the
Verifier and used only within this specific protocol instance.

Note:

The Verifier needs to remember the restricted HMAC key for a later step. It might do this by providing
an encrypted opaque context structure to the Host to be provided later, or through some other means.

3. The Host imports the restricted HMAC key (TPM2_Import ()) under the EK to produce a loadable
restricted HMAC key blob, and loads (TPM2_Load () ) that blob.

4. The Host generates (TPM2_Create()) and loads (TPM2_Load( )) the AK for which it will obtain a
credential.

Note:

Figure 3 specifically depicts a TPM2_Create ()-based flow, but TPM2_CreatePrimary () could be
used instead.

5. The Host certifies the AK using the restricted HMAC key (TPM2_Certify() or
TPM2_CertifyCreation()).

Note:

This same flow works for both the Cexrtify and CertifyCreation use-cases. CertifyCreation
allows the Verifier to have provided an additional nonce (qualifyingData) before the AK was created in
step 1, which can be used to prove that the AK was generated after the nonce was generated.

6. The Host provides the HMAC-signed attestation structure to the Verifier.

7. The Verifier checks the HMAC-signed attestation structure:

 checking the firmwareVersion number from the attestation statement (outer TPMS_ATTEST) against
expected values, or recording it for later reference

» checking the name from the attestation statement (inner TPMS_CERTIFY_INFO or
TPMS_CREATION_INFO) against the expected Name hash for the AK public key

The Verifier can choose to enforce a policy on which firmware versions are acceptable, prior to issuing the
AK credential. The Verifier can also embed the firmware version within the AK credential.

8. The Verifier issues the AK credential and provides it to the Host.

The Verifier optionally stores the information about the attested firmware version in its database
associated with the EK credential for later use or audit.

3.1 Privacy Concerns

Both the existing ActivateCredential-based AK protocol and this document’'s Import/Certify-based

AK protocol support a privacy-preserving mode. In the privacy-preserving mode of both the
ActivateCredential-based AK protocol and the Import/Certify-based AK protocol, the Host sends

its own TPM'’s EK credential along with a number of other authentic EK credentials, and the Verifier responds

by encrypting the same data to all the EKs. In the ActivateCredential-based AK protocol, the same
“challenge” data (e.g., nonce) is encrypted to each EK. In this document’s Import/Certify-based AK protocol,
the same restricted HMAC key is encrypted to each EK. For more information on the privacy-preserving
features of the EK, see the TPM Library [2] Part 1: “Credential Protection.”

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



4 Variant: Firmware Version retrieval independent of AK deployment

It is not necessary to tie the firmware verification to the deployment of an AK. In several scenarios, it is easier
to verify only the TPM'’s firmware associated with the EK and e.g. store this information in a database. One
such scenario is the validation if a firmware update for the TPM was actually applied to a TPM or whether this
process was interrupted or circumvented. The flow is depicted in Figure 4.

TPM Host Verifier

EK credential/pub——» Validate EK credential/pub

Generate restricted HMAC key

Wrap restricted HMAC key
<Impoﬁable restricted HMAC key blob | to EK pub
TPM2_CreatePrimary() (duplicate, inSymSeed)

A

Import + Load
restricted HMAC — ]
key under EK

EK handle: >

TPM2_Import(parentHandle = ek,

duplicate, inSymSeed from Verifier)

—

loadable restricted HMAC key blob- >

[€—— T TPM2_Load() restricted HMAC key

restricted HMAC key handle: >
Certify restricted TPMZ_Ct'mlfy(SIgnf-I_andle .= restricted HMAC key handle,
objectHandle = restricted HMAC key handle)
HMAC key S
using itself ———HMAC-signed Certification (certifyInfo, signature) » HMAC-signed Certification

(certifyinfo, signature)

Verify HMAC-signed Attestation
Check firmwareVersion
Record firmwareVersion for EK

Figure 4: Protocol Variant Overview

1. The Host provides the EK public key or credential(s).

2. The Verifier checks that the EK is valid and creates a challenge by encrypting an importable restricted
KEYEDHASH sign key to the validated EK. The Verifier provides the challenge to the Host.

Note:

The restricted HMAC key needs to be randomly generated by the Verifier and used only within this
specific protocol instance.

Note:

The Verifier needs to remember the restricted HMAC key for a later step. It might do this by providing
an encrypted opaque context structure to the Host to be provided later, or through some other means.

3. The Host imports the restricted HMAC key (TPM2_Import ()) under the EK to produce a loadable
restricted HMAC key blob, and loads (TPM2_Load () ) that blob.

4. The Host certifies the restricted HMAC key with itself using TPM2_Cexrtify().

Note:

This same flow can be adapted for any attestation command supported by the TPM, because every
attestation statement produced by the TPM contains firmware Version.

5. The Host provides the HMAC-signed attestation structure to the Verifier.

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



6. The Verifier checks the HMAC-signed attestation structure and the firmwareVersion number from
the attestation statement (outer TPMS_ATTEST). The name from the attestation statement (inner
TPMS_CERTIFY_INFO or TPMS_CREATION_INFO) can be ignored.

The Verifier stores the information about the actual current firmware in its database associated with the EK
credential for later use or audit.

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025



References

[1] “TCG EK Credential Profile for TPM Family 2.0.” Trusted Computing Group, Dec. 2024. Available:
https://trustedcomputinggroup.org/resource/http-trustedcomputinggroup-org-wp-content-uploads-tcg-
ek-credential-profile-v-2-5-r2_published-pdf/

[2] “Trusted Platform Module Library Specification, Family 2.0, Level 00, Revision 01.83.” Trusted
Computing Group, Mar. 2024. Available: https://trustedcomputinggroup.org/resource/tpm-library-
specification/

[3] “TCG Platform Certificate Profile.” Trusted Computing Group, Jul. 2024. Available: https://
trustedcomputinggroup.org/resource/tcg-platform-certificate-profile/

EK-Based Key Attestation with TPM Firmware Version | v1 | 2025/10/24 | Published © TCG 2025


https://trustedcomputinggroup.org/resource/http-trustedcomputinggroup-org-wp-content-uploads-tcg-ek-credential-profile-v-2-5-r2_published-pdf/
https://trustedcomputinggroup.org/resource/http-trustedcomputinggroup-org-wp-content-uploads-tcg-ek-credential-profile-v-2-5-r2_published-pdf/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tcg-platform-certificate-profile/
https://trustedcomputinggroup.org/resource/tcg-platform-certificate-profile/

	1 Purpose
	1.1 In Scope
	1.2 Out of Scope

	2 Introduction
	3 Protocol
	3.1 Privacy Concerns

	4 Variant: Firmware Version retrieval independent of AK deployment
	References

